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Controlling Chaos with Simple Limiters
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New experimental results demonstrate that chaos control can be accomplished using controllers that
are very simple relative to the system being controlled. Chaotic dynamics in a driven pendulum and a
double scroll circuit are controlled using an adjustable, passive limiter—a weight for the pendulum and
a diode for the circuit. For both experiments, multiple unstable periodic orbits are selectively controlled
using minimal perturbations. These physical examples suggest that chaos control can be practically
applied to a much wider array of important problems than initially thought possible.

PACS numbers: 05.45.Gg
Since the seminal work of Ott, Grebogi, and Yorke
(OGY) [1], the idea of using closed-loop control tech-
niques to tame physical systems exhibiting chaotic
behavior suggests an intriguing solution to a number of
problems. Variants of the OGY control scheme have
been used to control mechanical systems [2], electronic
systems [3], solid-state lasers [4], chemical systems [5],
and even heart tissue [6]. Chaos control using delay
feedback has also been demonstrated [7,8]. The objective
of these closed-loop chaos control schemes is to use very
small perturbations to select and stabilize specific unstable
steady states or unstable periodic orbits (UPO) that exist
in chaotic attractors.

In this Letter, we report experimental results that pro-
vide a new perspective on controlling chaotic systems. In
particular, we focus on the issue of controller complexity,
as measured relative to the system being controlled, and
demonstrate that chaos control can be accomplished using
very simple controllers. The notion of controller complex-
ity has not been adequately addressed in previous reports
of experimental chaos control, yet many of the most ex-
citing prospects of chaos control will hinge critically on
this issue.

Potential applications of chaos control reach beyond
merely the suppression of undesired chaotic behavior.
When operated in a chaotic regime, extraordinarily simple
devices can generate very complex signals. In deliberately
engineered chaotic systems the controller is used to switch
among a myriad of possible behaviors. The goal in these
systems is to exploit the natural complexity of chaos
to achieve an overall reduction in device complexity.
One emerging application of this paradigm is the use of
symbolic dynamics for communications [9].

Naturally, it is of universal benefit that the controller
be as simple as possible. For example, controlling the
chaotic pulsing of diode laser systems is very difficult
due to the extremely fast (sub-nanosecond) dynamics of
these systems [10]. Small latency and large bandwidth
requirements severely limit the complexity of a candidate
controller. Other examples include the control of spatially
extended dynamics, such as turbulent flow, where the un-
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stable dynamics are high dimensional and a large number
of distributed sensors and actuators may be required. In
this case, a complex controller is impractical due to cost
and density requirements. But, perhaps more fundamen-
tally, it is imperative that the complexity of the controller
be comparable to, or less than, the device being controlled
if we wish to engineer chaos to some useful end. The
whole concept of chaos engineering becomes untenable if
the simple chaotic oscillator has to be straddled with a mas-
sively complex controller.

Generally, the complexity of the controller in published
reports of chaos control is far greater than that of the
system being controlled. A possible exception is the ap-
plication of continuous delay feedback [7]. Unfortunately,
this type of control can add many unwanted degrees
of freedom to the system, and the resulting dynamics
can become considerably more complicated. A recent
letter reports a new method of chaos control based on
transit-time pulse-width-modulation feedback (TPF)
[11]. The simplicity of this approach allows the highest
frequency example of chaos control to date—a 19 MHz
Colpitts oscillator. However, the controller for this system,
which is much simpler than previous occasional feedback
controllers, still requires several integrated circuits and is
vastly more complex than the single-transistor oscillator
being controlled.

In this Letter, we show by experimental demonstration
that a chaos controller can be extremely simple—even
simpler than the physical system being controlled. The
first experiment is a driven chaotic mechanical pendulum,
for which the chaos controller is an additional mass at-
tached to the pendulum by a string. The second experi-
ment is a double scroll circuit, for which the controller is
simply a diode. Notably, these controllers are passive lim-
iters. For both experiments, multiple UPOs are selectively
controlled and the average control perturbation is minimal
when an actual UPO is stabilized, thereby providing strong
evidence that chaos control, by the usual definition, has
been attained.

The approach we take for controlling chaos in these ex-
periments is an extension of the TPF method described in
© 2000 The American Physical Society 3835



VOLUME 84, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 24 APRIL 2000
[11]. In TPF, a system parameter is perturbed by a constant
amount while the system state remains within a predefined
window of state space. The strength of the control per-
turbation is determined by the length of time the system
remains within the window. For select window positions,
a periodic orbit is stabilized with minimal control strength,
indicating that a UPO of the uncontrolled system has been
stabilized. In [11], the state window and control perturba-
tion are implemented using separate, active devices. For
the present experiments, we realize both of these elements
using a single, passive device—a weight for the pendulum
and a diode for the electronic oscillator. In effect, each of
these controllers is simply a limiter, which turns on when
the system state exceeds a threshold and directly pulls the
system back below threshold. In terms of a control win-
dow, the limiter forms a wall in state space at the threshold
level. By adjusting the threshold level, different periodic
orbits are stabilized. This is consistent with the results ob-
tained by Glass and Zeng for flattened one-dimensional
maps [12]. The stabilized orbits also include UPOs of the
uncontrolled system. When a UPO is stabilized, the system
state just reaches, but does not penetrate, the limiter wall;
consequently, the average control strength is very small in
this state.

For the first experiment, a driven chaotic pendulum was
purchased from Pasco Scientific. The operation of this
system and mathematical model have been described pre-
viously [13]. We chose a vertical configuration for the
pendulum, as shown schematically in Fig. 1. The pendu-
lum is driven with an electric motor and is equipped with a
rotary motion sensor for recording the angular position of
the pendulum mass. The motor has an angular frequency
of 4.9 rad�s. Without control, the angular position and
velocity trace out the chaotic attractor shown in Fig. 2(a).

FIG. 1. Configuration of the chaotic driven pendulum, includ-
ing the mechanical limiter in the (a) slack and (b) taut positions.
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The angular velocity is derived from the measurements of
the angular position.

To control this system, a simple mechanical limiter is
attached to the pendulum. This limiter consists of a 20-g
weight attached to one of the pendulum springs via a loose
string, as shown in Fig. 1(a). The rotating part of the
pendulum itself weighs 145 g. As the angular position
of the pendulum exceeds some threshold, the string goes
taut and lifts the weight, as shown in Fig. 1(b). Below
this threshold, the weight has no effect on the dynamics.
When lifted, the weight applies an additional force to the
system, and this new force is used as a control signal.
The exact nature of this force may be quite complicated,
since the weight also induces a lateral deflection of the
spring assembly; however, the weight clearly limits the
pendulum’s motion beyond a critical angle by effectively
increasing the pendulum’s mass. A standard lab jack, also
shown in Fig. 1, is used to change the rest height for the
control weight, thereby providing an adjustment for the
limiter position.

The motor’s angular frequency is not affected signifi-
cantly by the additional mass and, in general, the motion
of the pendulum repeatedly lifts the weight. By adjusting
the rest height, we make the critical angle for the limiter
coincide with the maximum angular travel for a particular
UPO in the system. The subsequent dynamical behavior
of the pendulum is periodic and does not lift the weight

FIG. 2. Measured phase space projections for the pendulum
in the (a) uncontrolled state, (b) controlled period-1 UPO, and
(c) controlled period-2 UPO.
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FIG. 3. Double scroll circuit including the diode limiter DLIM and control level adjustment VLIM.
at all. The only controlling force on the system is a small
tug as the string is just pulled taut. At these positions of
minimal control force, the pendulum is stabilized to an ac-
tual UPO of the uncontrolled system. Figures 2(b) and
2(c) show period-1 and -2 UPOs controlled and identified
in this manner. The periodicity of the UPOs is measured
relative to the drive period.

The second experiment uses a double scroll circuit,
which is a simple electronic oscillator known to exhibit a
wide variety of chaotic behaviors [14]. The variant shown
schematically in Fig. 3 was built using discrete compo-
nents on a solderless breadboard. Setting R1 � 1.45 kV,
the uncontrolled circuit is tuned to provide the folded-band
attractor shown in Fig. 4(a). The circuit oscillates at ap-
proximately 30 kHz.

To control this circuit a diode, labeled DLIM in Fig. 3,
is included in the circuit. When the voltage in the LC tank
portion of the circuit exceeds a threshold, the diode turns
on and excess charge is drained from the tank. In effect,
the diode acts as a limiter analogous to the weight used
to control the pendulum. To adjust the control level, the
voltage VLIM is varied.

Figures 4(b) and 4(c) show period-1 and -2 UPOs that
were stabilized using the diode limiter. The waveforms
FIG. 4. Measured phase space projections of the double scroll oscillator in the (a) uncontrolled state, (b) controlled period-1 UPO,
and (c) controlled period-2 UPO.
were recorded using a digital sampling oscilloscope
(Tektronix TDS680B). Both UPOs were identified by
local minima in the peak control current as VLIM was
changed. In Figures 5(a) and 5(b), the measured control
current iLIM is compared to the tank current iL1 for the
controlled states shown in Fig. 4. The control current was
monitored using a current-to-voltage converter at VLIM,
and the tank current was derived from measurements of
the voltage yC1. In both comparisons, the peak control
current is less than 0.5% of the maximum tank current,
thereby providing strong evidence that the orbits are actual
UPOs of the uncontrolled oscillator. Although this experi-
ment was performed at kHz frequencies, a diode could
perform the same control function on a chaotic device
operating at much higher, MHz or GHz frequencies.

From these examples it is clear that the usual compo-
nents of chaos control—measurement, sample and hold,
control signal calculation, and amplification—can all be
replaced by a simple limiter. As in all chaos control
schemes, the perturbation caused by the limiter becomes
small as the system approaches the target state. However,
in contrast to many other control techniques, the addition
of a limiter does not add complexity to the system by in-
creasing the size of the system’s state space, since the
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FIG. 5. Control current iLIM and tank current iL1 compared for stabilized (a) period-1 and (b) period-2 UPOs of the double
scroll circuit.
limiter is an instantaneous function of the current state.
Importantly, the limiter can be constructed of components
natural to the system at hand. For the pendulum, the limiter
is simply a mass whose position can be adjusted; for the
circuit, it is a diode with a voltage offset. For other physi-
cal systems, one can identify natural limiters that could be
used for chaos control. For an optical system, it could be
an adjustable photonic band gap filter that presents a bar-
rier in frequency space. For a ship crane, it might be a
well-positioned block. For a chemical process, it could be
an energy barrier due to a temperature and pressure depen-
dent phase transition. In these problems, the challenge is
to see the chaos controller not as an external, active device,
but as a simple extension of the system itself.
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