
VOLUME 84, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 24 APRIL 2000
Rescattering Processes for Elliptical Polarization: A Quantum Trajectory Analysis
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High-harmonic generation and high-order above-threshold ionization spectra calculated in the strong-
field approximation are analyzed in terms of the complex space-time orbits that result from a saddle
point analysis of the underlying integrals. For elliptical polarization, the plateaus of the spectra of
high-harmonic generation and high-order above-threshold ionization each turn into a staircase of very
similar appearance. Each step of the stair can be traced to a particular pair of orbits which are almost
identical in both cases.

PACS numbers: 42.50.Hz, 31.15.Kb, 32.80.Rm, 42.65.Ky
When atoms are exposed to high-intensity laser fields
characteristic effects become visible, whose general ap-
pearance is largely independent of the individual atomic
species [1]. The examples that have been most extensively
investigated are the generation of very high harmonics of
the incident laser field and the production of very hot elec-
trons. The spectra of both processes exhibit a plateau struc-
ture. There is general agreement that the physical origin of
both phenomena is very similar: electrons that have been
freed through tunneling and accelerated away from the ion
by the laser field may be accelerated back to the ion so that
they have the opportunity to recombine generating high
harmonics, or to rescatter and subsequently acquire addi-
tional kinetic energy. These processes are dominated by
the interaction of the electron with the laser field, which
explains the universality of the plateau and its cutoff.

In the physical understanding of these processes for lin-
ear polarization, the concept of quantum paths has proved
very fertile and has been applied extensively, in particular
for high-harmonic generation (HHG) [2–4], but also for
high-order above-threshold ionization (HATI) [5], that is,
for the above mentioned very hot electrons. These quan-
tum paths are complex electron trajectories in space and
time. Their real parts largely agree with the orbits of the
so-called simple-man model [6,7] (see also Refs. [8,9])
which describes the aforementioned rescattering scenario
in completely classical terms, neglecting the binding po-
tential. The quantum paths have, however, imaginary parts
which are small for parameter values where the orbits are
classically admissible. These imaginary parts are related
to the quantum-mechanical origin of the electron through
tunneling. The matrix element for HHG or HATI can be
represented as the coherent sum of the exponentials of
the action of these orbits, allowing for their constructive
or destructive interference, as mandated by the quantum-
mechanical path integral. The magnitude of the imaginary
part of an orbit determines its weight in this sum via the
ensuing imaginary part of the action. Indeed, in HHG ex-
periments it was possible to identify the contributions of
individual orbits via their different collective behavior [10].

The extension of the simple-man model to laser polari-
zations other than linear has met with difficulties: If the
0031-9007�00�84(17)�3831(4)$15.00
electron starts with zero velocity it never returns to its
origin. Owing to wave packet spreading, HHG and HATI
may still occur [11,12] and have indeed been observed
in experiments [13,14]. However, currently, there is no
model that works for elliptical polarization and preserves
the charm and predictive power of the simple-man model.

In this Letter, we present HATI and HHG spectra for an
elliptically polarized monochromatic driving field calcu-
lated using an improved Keldysh approximation [15] that
allows for one single act of rescattering, or the Lewenstein
model [2], respectively, and we analyze these spectra in
terms of quantum paths.

For the matrix element for ionization into a state with
asymptotic momentum p we use the approximation [15]

Mp �
Z `

2`
dt

Z t

2`
dt0�cp�t�jVU�t, t0�V jc0�t0�� , (1)

where cp�t� denotes the Volkov wave function with asymp-
totic momentum p, U�t, t0� the Volkov propagator, and
c0�t� the initial bound state with binding energy E0. The
binding potential V in Eq. (1) is arbitrary. We will use a
regularized zero-range potential which eliminates the spa-
tial integrations. For HHG, we employ the Lewenstein
model [2] which leads to an expression having the same
structure as Eq. (1). Henceforth, results based on the nu-
merical evaluation of either expression will be referred to
as “exact.”

In order to proceed towards the interpretation of these
“exact” results in terms of quantum paths we expand the
Volkov propagator in terms of the Volkov wave functions.
We are then left with the five-dimensional integral

Mp �
Z `
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0
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(2)
For HATI, the approximated exponent is
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The two variables of integration t0 and t in the form (2)
can be interpreted as the start time and the return (rescat-
tering or recombination) time of the simple-man model,
and the three terms of the action (3) illustrate the various
approximations made: a ground state unperturbed by the
field for times earlier than t0, propagation in the laser field
unperturbed by the binding potential for times in between
the start time t0 and the return time t, and final propagation
in the laser field after rescattering.

Stationary points �tS , t0S , kS� of the action (3) are given
by the solutions of the three equations [5]:

�k 2 eA�t0��2 � 22mjE0j , (4)

�k 2 eA�t��2 � �p 2 eA�t��2, (5)

�t 2 t0�k �
Z t

t0
dteA�t� . (6)

Of these, the first expresses energy conservation when the
electron at time t0 tunnels into the continuum, the second
enforces elastic rescattering at time t, and the third makes
sure that the electron returns to its starting point. For
HHG of a photon with frequency V � nv, the only dif-
ference is that the right-hand side of Eq. (5) is replaced by
2m�V 2 jE0j�.

The saddle point equations (4)–(6) contain the crucial
differences between linear and elliptical polarization: for
the former, owing to Eq. (6), k is along the field. Hence,
the initial velocity v0 	 �k 2 eA�t0���m is purely imagi-
nary in view of Eq. (4). In consequence, t0, t, and k acquire
imaginary parts. If, however, the binding energy jE0j is
neglected, the initial velocity vanishes, t, t0, and k become
real, and the standard simple-man model is recovered. In
contrast, for elliptical polarization, we can no longer con-
clude that the initial velocity is a purely imaginary vector.
Equation (4) states only that its real and imaginary part
must be perpendicular.

In terms of the solutions �tS , t0S , kS� of the saddle point
equations, the matrix element can be written as

Mp �
X
n

∑
det

µ
≠2S

≠qj≠qk

∂∏2�1�2�
exp�iS�tSn , t

0
Sn

, kSn �� ,

(7)

where qj� j, k � 1, . . . , 5� runs over the five variables
tS , t0S , and kS . The quantum paths contributing to the sum
have to be judiciously identified.

As an overview, we display in Fig. 1 ATI spectra for
various ellipticities, calculated from Eq. (1). The most
noticeable feature is the dramatic drop of the yields of
the rescattered electrons as soon as the ellipticity exceeds
j � 0.1. At the same time, the cutoff rather slowly recedes
to lower energies. Actually, for sufficiently high elliptic-
ity, there are several plateaus, each with its own cutoff. For
example, for j � 0.5, Fig. 1 shows cutoffs at the electron
energies E � 3Up , 5Up , 7Up , and 8.5Up , each of which
might determine the cutoff observed in an experiment, de-
pending on the experimental sensitivity.
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FIG. 1. ATI spectra in the direction of the large component of
the field F�t� � �F�

p
1 1 j2� �x̂ sinvt 2 jŷ cosvt� for vari-

ous ellipticities j as indicated. The ponderomotive potential
Up � e2F2��4mv2� is kept constant while j varies. The pa-
rameters are v � 0.0584 a.u. (l � 782 nm), Up�v � 17.9
(I � 5 3 1014 W�cm2), and E0 � 20.9 a.u. (helium). The
highest cutoff for j � 0.7 is outside of the figure with a yield
of 10238 at E � 8.2Up .

The main point of this Letter now is the comparison of
the exact calculation with the approximate evaluation (7)
which is based on the saddle point trajectories or quantum
paths determined from the solutions of Eqs. (4)–(6).
Figure 2 depicts successive approximations to the spec-
trum of Fig. 1 for j � 0.5. The dot-dashed curve
represents the result of incorporating the two trajectories
with the shortest travel time t 2 t0. They determine the
exact spectrum just before the cutoff with the highest

FIG. 2. The high-energy part of Fig. 1 for j � 0.5. The
circles indicate the exact yields for the individual ATI peaks
extracted from Fig. 1. The other curves give the results of in-
cluding the contributions of the trajectories 1 and 2 (dot-dashed),
3 and 4 (long-dashed), and 5 and 6 (short-dashed), ordered by
the length of their travel times, as well as the coherent sum of all
these contributions (solid). Please note that some of these curves
almost or completely coincide throughout parts of the spectrum.
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energy and for all energies higher than that. For lower
energy, however, their contribution becomes insignificant.
For 4.5Up , E , 6.5Up , again two trajectories dominate
the spectrum (long-dashed lines), those with the two
next-to-shortest travel times. Finally, in the energy region
between 6.5Up and 7.5Up , a pair of trajectories with yet
longer travel times is the most important one (short-dashed
lines). These first six quantum paths having the shortest
travel times yield an excellent approximation to the exact
spectrum for energies larger than 4Up except for the two
spikes visible at E � 5.3Up and 7.3Up . These spikes
always occur at the cutoffs of individual trajectories when
one or the other trajectory has to be dropped from the
sum (7); cf. Ref. [16]. For energies below 4Up , the
“direct electrons”— those that do not undergo rescatter-
ing—become relevant and their trajectories would have
to be included.

In Fig. 3 we show a high-harmonic spectrum obtained
using the Lewenstein model for the same parameters as in
the preceding figures. As before, we compare it to succes-
sive approximations in terms of contributions of quantum
paths. The same picture results as for HATI: the plateau
of linear polarization turns into a staircase, the height of
each step is largely identical to the corresponding step in
HATI, and the end of each step— its cutoff— is caused by
a particular pair of quantum paths.

Both for HHG and for HATI, the solutions of the saddle
point equations (4)–(6) are complex. In particular, the start
time t0 	 t0 and the return time t 	 t1 trace out paths (not
to be confused with the quantum paths in position space)
in the complex plane as a function of harmonic order or
electron energy, respectively. These are exhibited in Fig. 4

FIG. 3. High-harmonic spectrum for the parameters of Fig. 1
and j � 0.5. The circles are calculated using the Lewenstein
model. The various dashed lines are the squared contributions
of the quantum paths numbered as in Fig. 2. In contrast to
the preceding figure, also the contributions of those trajectories
are depicted that have to be dropped after the classical cutoff,
causing the spikes. They are characterized by yields that increase
exponentially for increasing harmonic order.
for the six trajectories already discussed above. First, we
notice that the complex-time orbits for HHG and HATI are
very similar. For increasing electron energy or harmonic
order the two orbits of a pair first move essentially parallel
to the real axis towards some point of closest approach
where they appear to repel each other and start parting
from each other in the imaginary direction. The point of
closest approach corresponds to the cutoff of that pair. This
behavior is the same for the start time and for the return
time. Notice, however, that the imaginary part of the return
time is much smaller than that of the start time.

Finally, in Fig. 5 the real parts of the first six quan-
tum trajectories are depicted for times between Ret0 and
Ret for HHG while for HATI the final trajectory of the
rescattered electron for times later than t is displayed,
too. The harmonic order and the electron’s energy in each
case correspond to comparable positions near the cutoffs
of the respective orbits. The trajectories for HHG and for
HATI are very similar, underlining again the close rela-
tion between the two processes. The trajectories (5,6) with
the longest travel times are quite delicate already, going
through Rex � 0 twice before they rescatter. Yet they are

FIG. 4. Paths in the complex plane traced out by the start
time vt0 (left-hand panels) and the return time vt1 (right-hand
panels) of the six trajectories with the shortest travel times
Rev�t1 2 t0�. The paths corresponding to HHG are marked
with diamonds at intervals of Dn � 8, those for HATI with as-
terisks at integer multiples of Up . For both, the dashed orbits
characterize the quantum paths that have to be dropped after the
cutoff. The six panels are ordered from top to bottom according
to travel time.
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FIG. 5. Real parts of the quantum trajectories that are respon-
sible for three cutoffs of HHG (at n � 67, 35, and 51; panels to
the left) and HATI (at 8.5Up , 5Up , and 7Up ; panels to the right).
The position of the atom is at the origin. The parameters are the
same as in Fig. 1 and j � 0.5. As in Fig. 4, the contribution
of the dashed trajectory has to be dropped after the cutoff. The
arrows mark the direction of the orbits as time goes on.

responsible for a specific part of the spectrum, as discussed
above.

The complex quantum paths start from and return to the
origin, x�t0Sn

� � x�tSn � � 0, for the nth quantum path. In
contrast, the orbits plotted in Fig. 5 depart from a position
away from the origin by up to 15 a.u., predominantly in
the x direction. This is because we plotted Rex�t� for real
times t $ Ret0S , so that the initial condition at the complex
start time t0S is never actually met in the plot; cf. Ref. [16].
Since the return time tS is almost real, the orbits closely
return to the origin.

It remains to be explained why the plateau characteris-
tic of linear polarization is commuted into a flight of stairs
by a field with significant elliptical polarization. This is
not related to the lengths of the respective travel times.
Rather, the clue comes from the fact, visible in Fig. 5, that
the trajectories take off essentially in the y direction, the
direction of the small component of the field. A real trans-
verse component y0y of the initial velocity v0 is required
in order that the electron return to its starting point. If in
Eq. (4) the term �my0y�2 is moved to the right-hand side,
in effect, the binding energy is increased by my

2
0y�2. A

larger binding energy, however, reduces the yield of the
process. Extracting a numerical value of my0y from the
calculated quantum paths shows that indeed this is largest
for the orbits (1,2) with the shortest travel times.

Our analysis ignored the Coulomb field during the
electron’s excursion in the continuum. While absolute
yields may be substantially enhanced, the relative shape
of the HHG and HATI spectra appears to be remarkably
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independent of the binding potential; cf. Ref. [17] for a
comparison to realistic calculations for linear polarization.
Moreover, as is evident from Fig. 5, Coulomb effects are
less significant for elliptic polarization since typical orbits
along their way tend to bypass the ionic core by many
atomic units so that “Coulomb refocusing” [18] is less
significant than for linear polarization.

In conclusion, we have, for elliptical polarization, per-
formed a detailed analysis of HHG and HATI spectra in
terms of quantum paths. Underlining the common origin
of the two effects by electrons that revisit the ionic core,
both the phenomenology of the plateaus and the quantum
paths that generate them are strikingly similar. For high
enough ellipticity, the plateau of linear polarization be-
comes a staircase. Each step can be attributed to a particu-
lar pair of quantum paths. In contrast to linear polarization,
orbits with comparatively long travel times make important
contributions. If means could be devised to affect the or-
bits in small spatial or temporal regions, this would open
the way to wide-ranging manipulation of HHG and ATI
spectra.
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