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Two-Photon Coherent Control of Atomic Collisions by Light with Entangled Polarization
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We describe a new method of coherent optical control of internal dynamics of atomic collisions by
means of two correlated light beams having entangled polarizations. We show that, if excitation of
a colliding pair of atoms is by two photons having entangled polarizations, it is possible to redirect
the output fragments of the collision into certain channels with a selected type of internal transition
symmetry. The transition symmetry is defined in the body-fixed coordinate frame which has random and
originally unknown orientation in space.

PACS numbers: 34.50.Rk, 34.80.Qb, 42.50.Ct
Significant experimental developments over the past
decade have led to remarkable understanding of details of
atomic collision dynamics. Studies of a broad spectrum
of processes, ranging from cold and ultracold collisions
[1–3], photoassociation [4,5], photodissociation [6,7],
photochemical reactions [8,9], optical and fractional
collisions [10,11], and collisional redistribution of light
[12], have revealed novel and often surprising effects
depending on variables associated with the collision alone
and with properties of the light used to initiate or probe
the dynamics. In many cases, dynamical correlation of
internal variables of the colliding particles have played a
critical role in the outcome; for light-induced processes,
dependencies on the cross sections due to classical char-
acteristics of the light, viz., polarization, frequency, and
intensity have been determined. A novel method to obtain
coherent control of the correlations in photodissociation,
by using elliptically polarized light, demonstrated selec-
tivity in the branching ratios for the process [7]. Further,
general principles for coherent control of collision and
reactive processes using a single light source have recently
been developed in a fundamental paper on control of
bimolecular scattering processes [13].

Because of recent advances in studies of photochemical
processes on a femtosecond time scale [8,9] and, as was
recently shown in atomic collision experiments [10,11],
it becomes possible to optically probe a colliding system
directly in the interaction domain and to select in this
manner a small segment of a collision trajectory. Such a
process, termed a fractional optical collision, is an example
of a continuum-continuum two-photon spectroscopy where
the first and second photons are used for initiating and
interrupting the collisional motion in an intermediate
molecular state. In studies up to now, photoexcitation was
driven by two independent light sources used mainly for
selecting and probing the location of the Condon points
of the fractional collision as described by quasistatic
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conditions of photoexcitation. The details of the internal
collisional dynamics, as well as the selective information
about different channels involved in the process, were
difficult to extract from the data obtained from the spec-
troscopic analysis, in spite of the fact that both intensity
and polarization spectra were determined.

In this Letter, we describe how the outcome of a frac-
tional collision may be significantly and selectively con-
trolled by utilization of quantum-correlated light beams.
Our approach is based on the requirement that the photon
correlations must interfere with correlations arising from
internal collisional dynamics. In our description of the
light statistics we employ a fully quantal approach, which
permits us to discuss the difference in predictions for clas-
sical and quantum electrodynamics. One aim of this paper
is to point out that to understand precise optical control of
elementary processes such as atomic collisions it is impor-
tant to follow the transformation of quantum correlations
(existing on a wave function level) from an electromagnetic
subsystem into a diatomic (or multiatomic) subsystem.
As a practical example of nonclassical light, we consider
the radiation from an optical parametric oscillator (OPO)
operating in a subthreshold regime, and so having en-
tangled polarizations of the output modes. Different
schemes of practical realization of entangled states with
the aid of optical parametric oscillators have been dis-
cussed in the literature [14–19].

In a perturbation theory approach any two-photon pro-
cess can be described in terms of the light correlation
function of second order, i.e., in terms of time �T � and
antitime �T̃ � ordered products of the Heisenberg operators
of positive and negative frequency components of electric
field amplitudes E�6�

n �rt� considered as functions of space
�r� and time �t� coordinates [20]. For a two-mode OPO
output with entangled orthogonally polarized components,
such a correlation function can be expanded in the follow-
ing sum:
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where each of the polarization vectors ei , e0
i (with i � 1, 2)

is one of the basic orthogonal polarizations of the OPO.
The sum over 1, 2, 10, 20 is restricted by the rule e1 fi e2
and e0

1 fi e0
2, so there are four terms in the expansion (1).

We assume here steady state and homogeneous conditions
of photoexcitation and consider the correlation function
only as a function of the time delay between appearances
of the first and second photons.

Strictly speaking the above expansion of the full correla-
tion function relates to the limit of weak subthreshold OPO
source, generating the photon pairs; see Eq. (7). This is
the most interesting and important case for our discussion.
But in a more general situation, to introduce the expansion
(1), we need to cancel out the noncorrelated contribution
when both of the photons appear in the same polarization
mode. However, even in a general situation, for methodi-
cal clarity, it is useful to discuss the correlation function
in form (1) since it lets us compare the difference between
quantum and classical types of polarization entanglement.

A schematic diagram illustrating the process of two-
photon excitation of colliding atoms is shown in Fig. 1.
There the vertical lines represent optical transitions, while
the paths along the interatomic potentials indicate the ki-
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netic motion of the colliding atoms. Based on the Franck-
Condon approximation and on the assumption of adiabatic
evolution of the diatomic system in the intermediate states,
the total cross section (or transition probability) of the frac-
tional collision can be expressed as

s0 �
X

1,2,10,20

X
XJ

�2�X1JFXJ�e1, e0�
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where the tensor functions
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considered as a function of e, e0 equal to either e1, e0
1

or e2, e0
2, are the irreducible polarization components of

the OPO light. Here, by CXJ
1n01n , we denote the Clebsch-

Gordan coefficients in the notation of Ref. [21]. Each
partial contribution of the X-rank components in the ir-
reducible product in Eq. (2) is weighted with the factor
Q
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where

D121020�t� � �TrD�`��21D121020�t� (5)

is the dimensionless correlation function normalized ac-
cording to its classical limit. With reference to Fig. 2, the
following notation is used in Eq. (4). j0 is the angular mo-
mentum of the lower state. In the arguments of the Wigner
d function, j12 and j6 are the average deflection angles
defined for different segments of the collisional trajectory
crossing the Condon points R1 and R2, as defined in Fig. 2.
t12 and t6 are the average durations of the fractional col-
lision defined for these segments of the trajectory, while
w�1� and w�2� are the Franck-Condon transition proba-
bilities for optical excitation near the points R1 and R2,
respectively. The step u functions in Eq. (4) indicate that
such transitions are acceptable either on incoming or out-
going parts of the motion.

The partial cross section Q
�X�
121020 is the most important

characteristic of the fractional collision process. As fol-
lows from Eqs. (1) and (2), this quantity describes both
the total probability for and the polarization dependence
of the process. The expression (4) can be consistently
derived based on the general theory of fractional optical
collisions [22]. Here we present only a qualitative descrip-
tion. First, we point out that all of the tensor components in
the sum of expression (4) relate to the internal molecular
(body-fixed) frame; the corresponding tensor indices are
indicated by overbars. The Clebsch-Gordan coefficients in
this expression can be treated as irreducible components
of the light, as defined in the molecular frame. Second,
the sum over tensor indices is noninvariant here and is ex-
panded only over those transitions which are permitted by
the Franck-Condon principle. The Wigner d functions de-
scribe the rotational and adiabatic transformation of the
light irreducible components due to adiabatic evolution of
the electronic subsystem during the internal part of the col-
lision for atomic motion from point R1 to point R2.

The correlation function of the light appears in Eq. (4)
as a function of fractional collision time intervals, which
reveals how the photon correlations interfere with the colli-
sional dynamics. Consider the situation when the photons,
emitted by a subthreshold OPO, can appear in two orthogo-
nal polarizations along x and y axes: ex and ey . Then,
assuming quasi-Gaussian statistics in the averaged product
(1), we obtain the following set of dimensionless correla-
tion functions:
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FIG. 1. Two-photon excitation of colliding atoms for locations
of the Condon points on (a) incoming-outgoing, (b) incoming,
and (c) outgoing parts of a classical trajectory
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where w is a phase mismatch between the anomalous cor-
relation functions in the product

�T̃E
�2�
1y �rt�E�2�

2x �rt 1 t�� �TE
�1�
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Here in the indices we display both the mode number and
the polarization. In our simple model of a subthreshold
OPO, sinh2k is of the order of the number of photons
emitted by the crystal in the coherence volume of para-
FIG. 2. Definition of deflection angles for different segments
of a collisional trajectory. Here R. or R, is either R1 or R2,
depending on the situations shown in Fig. 1

metric radiation. The opposite limits, when the efficiency
of the process k ! 0, or when k . 1, describe the weak
and strong outputs, respectively. Time correlation of twin
photons is described by the function g�t� which can be
controlled with an optical delay line.

From the point of view of classical electrodynamics,
only the first term (i.e., 1

2 ) in the expression for the diagonal
components of the correlation functions (6) is acceptable.
The nonclassical behavior of the correlation functions (6)
can be clearly seen in the weak radiation limit: if k ! 0
then coth2k ! `. Actually, such a singularity means that
for weak OPO light the correlation function (1) has lin-
ear (not quadratic) dependence on mode intensity. In this
case the dimensionless correlation function, normalized in
accordance to (5), should approach infinity for short time
delay. The linear dependence of two-photon absorption
on light intensity for the radiation created in the down-
conversion process was recently observed in experiment
[23]. For our discussion it is more important to point out
the nonclassical behavior of the polarization for OPO light.
Indeed, in the limit of weak output the two-mode light il-
luminating the colliding atoms describes the photon pairs
with the following cooperative wave function:

jC�12 �
1
p

2
�jex�1jey�2 1 eiwjey�1jex�2� . (7)

For such a polarization-entangled wave function in the case
of w � p , there is no particular polarization for each pho-
ton, but there is a strong mutual orthogonal polarization
between them.

As a particular application, consider the collisional sys-
tem, often discussed in optical collision theory, for which
the optical transitions are initiated between singlet states
of one atom. The second atom (an inert-gas atom) con-
serves its electronic configuration during the collision. If
the optically active atom is originally in the ground 1S
state, there are the following dipole-allowed two-photon
transitions available: 1S ! 1P ! 1S, 1D. For simplicity,
let us ignore rotational effects and assume that the main
contribution to the transition probability comes from the
recoil collision with small impact parameters. We can then
substitute expressions (6) into Eqs. (4) and (2) and look at
the partial contribution for each possible pair of Franck-
Condon transitions. In the Franck-Condon approximation
we can select all of the acceptable transitions in terms of
their molecular symmetry. Also in the recoil limit we can
3825
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ignore the difference between incoming-outgoing and ei-
ther incoming or outgoing parts of the classical trajectory,
since all of them have similar polarization dependence.

With such assumptions the partial contribution to the
cross section for the excitation via 1S ! 1S ! 1S or
1S ! 1P ! 1S is given by

s0 ~
1
15

w�1�w�2��1 1 �1 1 cosw� coth2kg�t�� . (8)

For the excitation via 1S ! 1S ! 1P or 1S ! 1P !
1P we obtain
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and the contribution for the excitation via 1S ! 1P !
1D channel is given by

s0 ~
1
5

w�1�w�2��1 1 �1 1 cosw� coth2kg�t�� . (10)

The dependence of these expressions on phase w reveals
how the quantum correlations, existing between the OPO
mode polarizations, can interfere with the internal dynam-
ics of the fractional collision process. This is most easily
seen in the limit of weak radiation, when the second terms
in the brackets of Eqs. (8)–(10) give dominant contribu-
tions. If the phase w � p , the transition probability for
1S ! 1S ! 1S, 1S ! 1P ! 1S, and 1S ! 1P ! 1D

excitation channels drops sharply. Such behavior can be
understood, based on the wave function (7), where the en-
tangled states have unknown polarization for each photon,
but there is a strong mutual correlation between their polar-
izations. If w � p and the first photon possesses unknown
polarization along an arbitrary direction in the space then
the second photon has polarization orthogonal to this di-
rection. In such a case, the absorption of the first photon
during the collision fixes the polarization direction for the
second photon, i.e., reduces the uncertainty of its quan-
tum state. Thus, when w � p , the second photon has
orthogonal polarization to the direction of the transition
dipole moment. Then it cannot be absorbed into the above
examples of the Franck-Condon transitions and such ex-
citation channels become closed. But at the same time,
the excitations via 1S ! 1S ! 1P and 1S ! 1P ! 1P

channels are open, and we obtain in contrast an increase in
the transition probability. Let us emphasize here that, from
the point of view of classical electrodynamics, this effect
is forbidden, since it would be impossible to prepare light
polarized along (or orthogonal to) an arbitrary and origi-
nally unknown direction in space.

In summary, we have shown that unique manipulations
of colliding atoms by light with entangled polarization can
result in coherent control of elementary processes such as
atomic collisions or chemical reactions. Even after full av-
eraging the polarization entanglement makes it possible to
close one channel of a photochemical reaction and to open
another if they have different optical transition symmetries.
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