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Presence of Many Stable Nonhomogeneous States in an Inertial Car-Following Model
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We present a single lane car- following model of traffic flow which is inertial and free of collisions. It
demonstrates observed features of traffic flow such as existence of three regimes: free, nonhomogeneous
congested (NHC) or synchronized, and homogeneous congested (HC) or jammed flow; bistability of free
and NHC flow states in a range of densities, hysteresis in transitions between these states; jumps in the
density-flux plane in the NHC regime; gradual spatial transition from synchronized to free flow; long
survival time of jams in the HC regime. The model predicts that in the NHC regime there exist many
stable states with different wavelengths, and noise can cause transitions between them.

PACS numbers: 45.70.Vn, 89.40.+k
In the last several years, growing effort has been made
in understanding traffic flow dynamics. Recent observa-
tions [1,2] show that traffic flow demonstrates complex
physical phenomena, among which are the following:

(i) The existence of three phases: free flow regime at
low densities, NHC (or “synchronized”) flow regime at
intermediate densities where oscillations of velocities of
all cars are observed, and HC or jammed flow regime
at high densities. The NHC regime has two essential
features: synchronization of flow in different lanes (for
the multilane traffic) and fluctuation performed by the
system in density-flux plane. Since our model is single
lane we will refer to this state as “nonhomogeneous
congested.”

(ii) Hysteresis in transitions between the free and the
NHC flow.

(iii) Long survival time of traffic jams.
Modeling of traffic flow is traditionally performed

using two approaches: The microscopic, or car-follow-
ing model approach, which describes the nearest-neigh-
bor interaction between two consecutive cars and
investigates its influence on the flow (see, e.g., [3–6]);
and the macroscopic, or continuous model approach,
which represents the flowing traffic as a continuous
media and describes it using the hydrodynamical partial
differential equations (see, e.g., [7–9]). Wide surveys of
these models are given in [10–12].

In this Letter, we introduce an inertial single lane car-
following model, which (i) demonstrates and explains the
experimentally observed phenomena mentioned above,
and (ii) shows the existence of many stable NHC states
with different wavelengths in the second regime and the
possibility of transitions between them in the presence of
noise.

To formulate the model we assume that car acceler-
ation is affected by four factors: (a) aspiration to keep
safety time gap from the car ahead, (b) prebraking if
the car ahead is much slower, (c) aspiration not to ex-
ceed significantly the permitted velocity, and (d) random
noise. In mathematical description, the acceleration of
0031-9007�00�84(2)�382(4)$15.00
the nth car an is given by a sum of four terms depend-
ing on its coordinate xn, velocity yn, distance to the
car ahead Dxn � xn11 2 xn, and the velocities differ-
ence Dyn � yn11 2 yn:

an � A

µ
1 2

Dx0
n

Dxn

∂
2

Z2�2Dyn�
2�Dxn 2 D�

2 kZ�yn 2 yper � 1 h , (1)

where A is a sensitivity parameter, D is the minimal dis-
tance between consecutive cars, yper is the permitted ve-
locity, k is a constant, and h is a white noise term. The
safety distance Dx0

n � ynT 1 D depends on T , which is
the safety time gap constant. The function Z is defined
as Z�x� � �x 1 jxj��2. In further analytical and numeri-
cal exploration of the model the noise term h is omitted
unless otherwise stated.

In the following, we discuss in more detail the terms
in the right side of (1):

The first term plays an important role when the ve-
locity difference between consecutive cars is relatively
small. In this case the nth car accelerates if Dxn . Dx0

n
and brakes if Dxn , Dx0

n. The choice of function in this
term is not unique. Replacing it by other functions of
Dxn which are increasing, equal to zero if Dxn � Dx0

n
and tend to 2` if Dxn ! 0, such as A log�Dxn�Dx0

n�,
gives similar results.

The second term plays an important role when yn ¿
yn11. A car getting close to a much slower car starts
braking even if Dxn . Dx0

n. This term corresponds to
the negative acceleration needed to reduce jDynj to 0 as
Dxn ! D.

The dissipative third term is a repulsive force acting
when the velocity exceeds the permitted velocity.

Note that unlike the optimal velocity model [5] the
acceleration in our model depends explicitly on Dyn

and on Dxn which enables us to make the flow free of
collisions.

The motion of cars is therefore described by the follow-
ing system of ordinary differential equations:
© 2000 The American Physical Society
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(2)

n � 1, 2, . . . , N with periodic boundary conditions
xN11 � x1 1

N
r , yN11 � y1.

A solution of Eqs. (2) which corresponds to homoge-
neous flow is

y0
n � y0 �

8><
>:

A�12Dr�1kyper

ArT1k , r #
1

D1Typer
,

12Dr

rT , r $
1

D1Typer
,

(3)

x0
n �

n21
r 1 y0t.

In the following numerical analysis we use parallel up-
dating rule and parameters values yper � 25�m�s�, T �
2�s�, D � 5�m�, 1 # A # 5�m�s2�, and k � 2�s21�.

The flux-density relation (often called the fundamental
diagram) for the homogeneous flow is shown in Fig. 1(a)
as a dashed line. Comparison of this curve, with the fun-
damental diagrams (solid lines) obtained by the numeri-
cal solution of Eqs. (2) for different values of A starting
from nonhomogeneous initial conditions, indicates that for
values of r smaller than some critical value r1 or greater
than another critical value r2 the flux is the same, while
for the intermediate values of density (r1 , r , r2) the
measured flux is considerably lower than the homoge-
neous solution flux. Plotting the variance of velocities
sy � � 1

N

PN
n�1�yn 2 �y��2�1�2 (where �y� is the average

velocity) against r [Fig. 1(b)] shows the existence of ve-
locity fluctuations for r1 , r , r2. We can therefore
define three regimes in traffic flow: the free flow regime
(r , r1), the NHC flow regime (r1 , r , r2), and the
HC flow regime (r . r2). Note that the flow in the first
and the last regimes is homogeneous. Note also that for
small values of A r2 is greater than the maximal possible
density rmax � 1�D and the HC flow regime does not ex-
ist. See Fig. 1(b) for A � 2. This finding is supported by
the analytical results shown below.

In order to estimate the values of r1 and r2 we analyze
the stability of the homogeneous flow solution. The lin-
earization of Eqs. (2) near the homogeneous flow solution
(3) in variables jn � xn 2 x0

n has the form

j̈n � 2p �jn 1 q�jn11 2 jn�, n � 1, . . . , N , (4)

where jN11 � j1, p � ATr 1 k, q �
AT1kTyper 1kD

ATr1k ?

Ar2 for r #
1

D1Typer
and p � ATr, q � Ar otherwise.

As in [5] solution of Eq. (4) can be written as

jn � exp�ian 1 zt	 , (5)
FIG. 1. (a) Fundamental diagram for A � 5, 3, 2�m�s2� (top
to bottom). Dashed line corresponds to the homogeneous solu-
tion. (b) Ratio of variance of velocities to the average velocity
for A � 2, 3, 5�m�s2� (top to bottom). (c) Qualitative plot of
function S�r�. (d), (e) Hysteresis loops in transitions between
free and NHC flow states for A � 3; arrows show the direction
of changing the global density. (f ) Results of local measure-
ments of density and flux in free (almost straight line) and NHC
regimes.

where a �
2p

N k (k � 0, . . . , N 2 1) and z is a complex
number. Substituting (5) into (4) we obtain the algebraic
equation for z,

z2 1 pz 2 q�eia 2 1� � 0 . (6)

Each of the N Eqs. (6) has two solutions. These 2N
different complex numbers are the eigenvalues of system
(4). One of them (which corresponds to k � 0) is equal
to zero regardless of values of parameters. In this case all
jn in (5) are equal to a constant and belong to the one-
dimensional subspace of equilibria of system (4) (defined
by equations j1 � . . . � jN , �j1 � . . . � �jN � 0). This
indicates that the disturbed state xn for z � 0 is also ho-
mogeneous. For z fi 0, jn in (5) is a wave with increasing
or decreasing amplitude. Therefore, if we find conditions
under which other 2N 2 1 eigenvalues have negative real
parts [the magnitude of wave (5) decreases with time] we
can say that under these conditions the homogeneous flow
solution (3) is stable.

Following the approach of [5] we can derive this condi-
tion as p2

q . 2 or S�r� . 2, where

S�r� �

8><
>:

�ATr1k�3

r2A�AT1kyperT1kD� , r #
1

D1Typer
,

ArT2, r $
1

D1Typer
.

(7)
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A qualitative plot of S�r� is sketched in Fig. 1(c). From
this figure it follows that depending on r we have three
regimes of stability/instability of the homogeneous flow
solution. If r , r0 (free flow) or r . r00 (HC flow) the
homogeneous flow solution is stable and if r0 , r , r00

it is unstable, where r0 � 1
D1Typer

and r00 � 2
AT2 . The

third regime does not exist for r00 . rmax [e.g., Figs. 1(a)
and 1(b) for A � 2�m�s2�]. Our numerical simulations
show that r2 
 r00, but r0 is considerably greater than r1,
thus we expect that for r1 , r , r0 both homogeneous
and nonhomogeneous states are stable.

In the NHC regime (r1 , r , r2) the flow is char-
acterized by the presence of humps (dense regions) mov-
ing backwards or forwards. When the flow has stabilized
the humps are equidistant and the evolution of traffic in
time and space resembles the spreading of a wave. The
existence of a NHC regime was predicted by other car-
following (e.g., [5] where it was called “jammed flow”)
and continuous (e.g., [9], where it was called “recurring
humps state”) models and measured experimentally [1].

Simulations of our model show that the NHC flow state
is not unique. Figures 2(a)–2(c) present the car velocities
after the NHC flow regime has stabilized for three different
initial conditions. It can be seen that the “wavelengths” of
these states are different. Figure 2(d) presents the conver-
gence of flux in these experiments to distinct values. Our
simulations also show the existence of solutions with other
“wavelengths” and flux values. Figure 2(e) shows the fun-
damental diagrams for three different wavelengths. Con-
sequently, depending on initial conditions, different stable
NHC states emerge with different values of flux and dis-
tances between neighboring humps. This indicates that
for r1 , r , r2, system (2) has many stable periodic (in
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FIG. 2. Three different stable states in the NHC regime, ob-
tained from different initial conditions. Global density r �
0.06�veh�m�, A � 3�m�s2�. (a)– (c) Car velocities. (d) Con-
vergence of flux to different values in these three experiments.
(e) Fundamental diagrams for three different stable NHC states
with wavelengths 20, 5, and 6.67 cars (top to bottom). A dashed
line corresponds to the homogeneous solution.
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Dxn, yn variables) solutions, and hence in the 2N-dimen-
sional space of variables Dxn, yn there exist many attrac-
tive limit cycles.

Our simulations show that some of these cycles are more
sensitive to noise than others, and therefore are metastable.
For sufficiently large h (and below certain threshold) the
system moves from these metastable states to those which
are stable. It appears that cycles with relatively small and
relatively large wavelengths are more sensitive to noise
than those with intermediate wavelengths. The space-time
diagram in Fig. 3 illustrates this phenomenon. Simula-
tions are started without noise from a homogeneous initial
condition with small harmonic disturbance. After the peri-
odic state is stabilized, the noise term (h fi 0) is added at
t � 200 s. The system is then attracted to another stable
limit cycle with a bigger wavelength. Note that transition
from a smaller to a bigger wavelength has been observed
recently [13] in real traffic.

As seen from above for r1 , r , r0 not only NHC
flow solutions are stable, but also the homogeneous flow
solution. This bistability is the origin of hysteresis in tran-
sitions between free and NHC flow regimes. Such bista-
bility was observed experimentally [1] and was found in
other models [5,6,9]. Figure 1(d) shows a hysteresis loop
in the density-flux plane. The upper curve is obtained by
increasing the density of cars adiabatically preserving the
road length L [14]. It can be seen that up to the value
of density r0 the homogeneous flow is preserved. The
lower curve was obtained by adiabatically decreasing the
density in the same manner. While decreasing the den-
sity, the flow remains nonhomogeneous even for r , r0.
Figure 1(e) presents the hysteresis loop in the global den-
sity–velocities fluctuations plane.

Our results also illustrate the well-known phenomenon
[1,2,5,9,10] of jumps which the system performs in the

FIG. 3. Transition from a metastable to a stable cycle in
presence of noise. r � 0.06�veh�m�, A � 3�m�s2�, N � 120.
Noise added at t � 200 s.
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FIG. 4. Results of local measurements of flux and density at
different distances from the on-ramp. (a) 500 m upstream the
on-ramp, (b), (c) 250 and 1000 m downstream, respectively.
Filled circles— free flow; empty circles—NHC flow.

density-flux plane in the NHC flow regime when the den-
sity and the flux are measured locally. In our numerical
simulation [Fig. 1(f)] we started from a value of density
below r0, increased it gradually in the described above
manner up to a value greater than r0, and decreased it
back. These jumps may be explained by our finding of
many stable states in the NHC regime.

Our model also demonstrates the gradual spatial transi-
tion from the NHC to free flow in the downstream direction
which was measured by [1]. The results of local measure-
ments of density and flux at different distances from an
on-ramp [15] are shown in Fig. 4 which is in good agree-
ment with Fig. 3 of [1].

In the HC flow regime the only stable solution is the
homogeneous flow solution. We have not found evidence
of the existence of bistability or hysteresis in transitions
between the NHC and HC flow regimes. Starting from
random initial conditions, we observe that initial fluctua-
tions of the velocity seem to decay according to a power
law sy � t2b for t ø t� and exponentially sy � e2t�t

for t ¿ t�. We find t� � Lz and t � Lz with z � 2.0 6

0.1. These results are qualitatively similar to that obtained
by [16] for a cellular automata model [4], but with different
values of exponents. The result z 
 2 seems to be univer-
sal for the model and in agreement with random walk argu-
ments of [6]. For the parameters values A � 4, r � 0.15
we get b 
 0.21 6 0.04. Relatively slow power-law de-
cay of fluctuations can explain the experimentally observed
long survival time of jams [2].

In summary, we present a single lane car-following
model which explains important features of traffic ob-
served experimentally. The model predicts the existence
of many stable periodic states in the NHC (synchronized)
flow regime. We find that some of these states are
metastable and have higher sensitivity to noise.
We wish to thank D. E. Wolf, B. S. Kerner, and
S. Schwarzer for useful discussions.
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