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Hydrodynamics of Nuclear Matter in the Chiral Limit
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Using the Poisson bracket method, we construct the hydrodynamics of nuclear matter in the chiral
limit, which describes the dynamics of all low-energy degrees of freedom, including the fluid-dynamical
and pionic ones. The hydrodynamic equations contain, beside five Euler equations of relativistic fluid
dynamics, N2

f 2 1 second order equations describing propagating pions and N2
f 2 1 first order equations

describing the advection of the vector isospin charges. We present hydrodynamic arguments showing
that the pion velocity vanishes at the second order phase transition at Nf � 2.

PACS numbers: 21.65.+ f, 12.39.Fe, 24.10.Nz, 47.75.+f
Hydrodynamics [1] is the theory describing the low-
frequency, long-wavelength dynamics of liquids (or, in an
extended sense, of any system). In this regime most de-
grees of freedom become irrelevant since they relax during
the time characteristic of particle collisions; the only ones
that survive are either those related to the conservation laws
or the phases of the order parameters of broken continuous
symmetries. The simplest example is normal fluids, where
hydrodynamic variables arise due to the conservation of
energy, momentum, and particle number. In superfluid
He4 and He3, additional hydrodynamic variables emerge
from the symmetry breaking by the condensate. Although
in all of these systems the physics is quite complicated
at the molecular level, at large scales the hydrodynamic
equations have simple forms dictated by the symmetries,
the pattern of symmetry breaking, and the conservation
laws. Such equations typically involve unknown coeffi-
cients, which can be computed from the microscopic the-
ory or measured in experiments.

A similar philosophy is shared by the chiral perturba-
tion theory, which describes the long-distance dynamics
of QCD with light quarks [2]. At low energies, QCD is a
strongly coupled theory where not much can be computed,
at least at this moment, in a reliable fashion. However,
well below the chiral scale (about 1 GeV), the dynamics is
determined by the chiral Lagrangian, which can be written
down knowing only the chiral symmetry and the pattern of
chiral symmetry breaking of QCD. To the lowest order,
pions are governed by the nonlinear sigma model, the only
free parameter of which is the pion coupling constant fp ,
which can be determined by matching the predictions of
theory with experiment.

In nuclear matter in the chiral limit, the low-energy de-
grees of freedom include both the fluid-dynamical vari-
ables (the energy-momentum tensor) and the chiral ones
that describe the massless Goldstone modes arising from
the breaking of chiral symmetry. All these degrees of free-
dom are coupled to each other; therefore, a full hydro-
dynamic treatment must include all these modes. In this
respect, the hydrodynamics of nuclear matter is more simi-
lar to that of superfluids than of normal fluids. Treatments
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so far have largely dealt with the fluid dynamical and chi-
ral variables separately, ignoring the interplay between the
two [3].

The purpose of this paper is to construct the hydrody-
namic theory of nuclear matter in the chiral limit, capable
of describing all low-energy degrees of freedom of the lat-
ter. The primary place where such a theory can be applied
is in the theory of heavy-ion collisions, where pion modes
can arise by thermal activation or from the spinodal insta-
bilities at the chiral phase transition.

Degrees of freedom.—For definiteness, we will be
working in Nf � 2 QCD, but most formulas remain
valid at any value of Nf. As the first approximation, we
take the quark masses to be zero, mu � md � 0. The
nonzero pion mass, hopefully, can be taken care of by
expanding around the chiral limit. We will assume that
the temperature and the chemical potential are low enough
so that the chiral symmetry is broken.

The first step toward a hydrodynamic description is to
identify the hydrodynamic variables. As mentioned above,
the latter are the densities of conserved charges or the
phases of order parameters of broken continuous symme-
tries. In nuclear matter, different vacua arising from chi-
ral symmetry breaking are characterized by the phase S

of the condensate, where S [ SU�2�, which transforms
under chiral rotations as S ! LSRy. Slow variations of
S correspond to soft pions, which, due to the derivative
coupling, relax much slower than a typical mode, and,
hence, are hydrodynamic degrees of freedom. The con-
servation laws include those of the energy and the mo-
mentum, as well as the baryon number n �

R
dx qyq (q

denotes quarks), and the left- and right-handed isospin
charges

R
dx r

a
L,R�x� �

R
dx q

y
L,R

la

2 qL,R, which are the
generators of left and right isospin rotations. Therefore,
the hydrodynamics variables are the energy and momen-
tum densities T0n , the baryon number density n�x�, the left
and right isospin charge densities r

a
L,R�x�, and the SU(2)

phase of the condensate S�x�.
Hydrodynamics of a reduced set of variables.—A non-

trivial hydrodynamics can be already constructed for a re-
duced set of variables, chosen here to contain r

a
L,R and S.
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In this simplified treatment, we ignore the variation of the
fluid dynamical degrees of freedom, regarding the fluid as
frozen. Such a theory is not the full theory, but its con-
struction is much simpler and the equations obtained are
suggestive of those in full hydrodynamics, which will be
constructed later.

The method we use to write down the hydrodynamic
equations is the elegant Poisson bracket technique [4,5],
which regards the ideal hydrodynamics of any fluid as a
Hamiltonian system defined by a Hamiltonian and a set of
Poisson brackets between hydrodynamics variables. The
Poisson brackets arise from the canonical commutators in
the microscopic theory; the ones between rL,R are the
classical version of the current algebra commutators,

�ra
L�x�, rb

L�y�� � 2fabcrc
L�x�d�x 2 y� ,

�ra
R�x�, rb

R�y�� � 2fabcrc
R�x�d�x 2 y� , (1)

�ra
L�x�, rb

R�y�� � 0 ,

while those between rL,R with S are defined by the trans-
formation laws of S under chiral rotations, since rL,R are
the densities of charges that generate these transformations,

�ra
L�x�, S�y�� � 2i

la

2
S�x�d�x 2 y� ,

�ra
R�x�, S�y�� � iS�x�

la

2
d�x 2 y� .

(2)

Finally, the Poisson brackets of S with itself vanishes,

�S�x�, S�y�� � 0 . (3)

Now let us turn to the Hamiltonian. We will limit our-
selves to the leading order in derivatives of S, since we
are interested in the dynamics at the largest scales. We
will also keep only leading-order terms in powers of r.
The most general form of the Hamiltonian consistent with
chiral symmetry is

H �
Z

dx
∑

f2
s

4
tr≠iS

y≠iS 1
1

f2
t

tr�rL 2 SrRSy�2

1
1
f2

y

tr�rL 1 SrRSy�2

∏
, (4)

where rL,R � r
a
L,R

la

2 and fs, ft , and fy are constants
with the dimension of mass, whose physical meaning will
become clear later.

Taking the Poisson brackets with the Hamiltonian (4),
we obtain the equations of motion of the hydrodynamics
variables:

≠tS � 2
2i

f2
t

�rLS 2 SrR� , (5)

≠trL � 2≠iJ
L
i , (6)

≠trR � 2≠iJ
R
i , (7)

where
3772
JL
i �

i
4

f2
s S≠iS

y, JR
i �

i
4

f2
s Sy≠iS .

Equations (6) and (7) reflect the conservation of left- and
right-handed flavor charges, where J

L,R
i plays the role of

the chiral isospin currents. Note that fy does not appear
in Eqs. (5)–(7); the reason is that tr�rL 1 SrRSy�2 �
tr�r2

L 1 r
2
R 1 2rLSrRSy� is a Casimir operator. Equa-

tions (5)–(7) completely determine the dynamics of r and
S. These differential equations are of first order in time
and describe the evolution of 3�N2

f 2 1� � 9 variables.
The relation to the nonlinear sigma model.—The hydro-

dynamic Eqs. (5)–(7) should be contrasted with the field
equations of the nonlinear sigma model, which describes
the dynamics of pions at zero temperature and chemical
potential. The latter is composed of three equations of
second order in time derivative, which can be rewritten as
six first order equations describing the evolution of S and
≠tS. Therefore our hydrodynamics contains at least three
extra degrees of freedom that are not presented in the non-
linear sigma model.

To find the relation of the hydrodynamic equations with
the field equations of the nonlinear sigma model, one
solves Eq. (5) with respect to rL and rR and expresses
them via ≠tS and a new variable a:

rL � 2
i
4

f2
t S≠tS

y 1
1
2

a , (8)

rR � 2
i
4

f2
t Sy≠tS 1

1
2

SyaS . (9)

In particular, a � rL 1 SrRSy, therefore in the vacuum
where S � 1, a is the density of vector isospin charge.
The equation of motion for a reads

�a � 2
1
2

�S≠tS
y, a� , (10)

while the equation for S is now second order in time
derivative,

if2
t ≠t�S≠tS

y� 2 if2
s ≠i�S≠iS

y� 1 �S≠tS
y, a� � 0 .

(11)

Equation (10) always allows a � 0 as a solution. In this
case, Eq. (11) reduces to the field equation of the non-
linear sigma model with pion velocity equal yp � fs�ft .
Therefore fs and ft play the role of spatial and tempo-
ral pion decay constants, respectively [6]. The nonlinear
sigma model can be interpreted as the Hamiltonian system
(1)–(4) with the constraint rL 1 SrRSy � 0.

In general, however, a needs not vanish. Equation (10)
implies that, in the dissipationless limit we are considering,
a only precesses with time. Since Eq. (10) is first order in
time derivative, once dissipation is included into the theory
a will become a true diffusive mode. In any case, when
a fi 0, our hydrodynamics equation is different from the
field equations of the nonlinear sigma model.

Hydrodynamic pion condensation.—To understand the
physical meaning of the term proportional to a in Eq. (11),
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consider the case where S makes only small variations
around S � 1. As noted above, a is now the vector
isospin charge. Subsequently, a can be nonzero if baryons
are included into the theory. For example, if the baryon
background contains more neutrons than protons, then
a3 � rp 2 rn is nonzero and negative. It is clear from
the discussion above that a is the only baryonic degree of
freedom that enters the hydrodynamic theory.

By expanding around S � 1, using S � exp�if21
t 3

lapa�, one finds the following linearized equation for the
pion field on an isospin-asymmetric background:

≠2
0pa 2 y2

p≠ip
a 1 f22

t fabc≠0pbac � 0 . (12)

Such an equation can also be obtained from the
mean-field approximation of the chiral perturbation
theory, by replacing in the interaction Lagrangian
2�2fp �22fabcpa≠mpbN̄gm lc

2 N the isospin baryon
density N̄g0 lc

2 N by its mean value ac. We have shown
that this mean-field procedure becomes reliable in the
hydrodynamic limit, provided the in-medium pion decay
constants ft and fs are used. Equation (12) predicts a
split between the dispersion relations of p1 and p2

in neutron-rich backgrounds where a3 , 0. This is the
hydrodynamic equivalence of pion condensation [7].

Pion velocity near the second order phase transi-
tion.—Let us consider Nf � 2 and assume that the
baryon chemical potential m is zero or small enough so
that the phase transition in temperature is second order [8].
We will argue here that the pion velocity vanishes at the
critical temperature. Indeed, as one approaches the critical
temperature Tc, the dependence of the Hamiltonian (4)
on the phase of the condensate S should become weaker,
and, at T � Tc, H should not depend explicitly on S. The
latter can happen only if at the critical temperature fs � 0
and ft � fy . Now since fy enters the Hamiltonian (4) as
a2�f2

y , it is related to the response of nuclear matter in
the isospin vector channel. Such a quantity has no reason
to vanish at the phase transition. Therefore one can expect
fy fi 0 at Tc and, hence, ft also does not vanish at the
critical temperature, in contrast to fs. Therefore the pion
velocity yp � fs�ft approaches zero when T ! Tc.

Full hydrodynamics.—Now let us turn to the discus-
sion of the full hydrodynamic equations, which contains
not only chiral variables but also the fluid dynamical ones.
These equations can also be derived from the general Pois-
son bracket technique similar to the one used above. The
hydrodynamic variables include, beside S and rL,R, the
baryon density n�x�, the entropy density s�x�, and the mo-
mentum density T0k�x�. The nonvanishing Poisson brack-
ets, beside those written in Eqs. (1)–(3), are

�T0i�x�, A�y�� � A�x�≠id�x 2 y�, A � s, n, rL,R ,

�T0i�x�, S�y�� � 2≠iS�x�d�x 2 y� ,

�T0i�x�, T0k�y�� �

∑
T0k�x�

≠

≠xi
2 T0i�y�

≠

≠yk

∏

3 d�x 2 y� .

In particular, now tr�rL 1 SrRS�2 is no longer a Casimir
of the Poisson algebra: it has a nonzero Poisson bracket
with T0k . The Hamiltonian is chosen in the most general
form consistent with symmetries and containing only sec-
ond order of rL,R and derivatives of S,
H �
Z

dx T00�x� �
Z

dx
µ
e 1 fij tr≠iS≠jS

y 1
a
2

tr�rL 2 SrRSy�2

1
ay

2
tr�rL 1 SrRSy�2 2 ick tr�rLS≠kSy 1 Sy≠kSrR�

∂
, (13)
where e, fij , a, ay , and ck are functions of s, n, and T0k .
It is, however, more convenient to work with the conjugate
variables: the temperature T � ≠T00�≠s, the chemical po-
tential m � ≠T00�≠n, and the velocity yk � ≠T00�≠T0k .
In the frame where yk � 0, e is determined by the nu-
clear equation of state, while fij � dijf2

s �4, a � 2f22
s ,

ay � 2f22
y are functions of the local temperature T and

chemical potential m, and ck � 0. The equations of mo-
tion for our variables can be found by taking the Poisson
brackets with the Hamiltonian (13). The condition that
≠0T00 � 2≠iT0i allows one to determine the velocity de-
pendence of e, fij , a, ay , and ck , which turns out to be
equivalent to the condition of boost invariance. The latter
allows the final equations to be written in a relativistically
covariant form, although our formalism is Hamiltonian in
nature. After quite laborious, but straightforward, calcula-
tions [9], one finds that the full set of hydrodynamic equa-
tions consists of (i) a second order equation for S,

i≠m�� f2
t 2 f2

s �umunS≠nSy 1 f2
s S≠mSy� 1

�umS≠mSy, a� � 0 ; (14)
(ii) a first order equation describing the advection and pre-
cession of the vector isospin charge a,

≠m�uma� � 2
1
2

�umS≠mSy, a� ; (15)

(iii) the continuity equation for the baryon charge,

≠m�umn� � 0 ; (16)

and (iv) the conservation of energy momentum,

≠mTmn � 0 , (17)

where the energy-momentum tensor Tmn is a sum of a fluid
dynamical part and a field (pion) part,

Tmn � �r 1 p�umun 2 pgmn

1
f2

s

4
tr�≠mS≠nSy 1 ≠nS≠mSy� .

Moreover, both the energy density r and the pressure p
receive a contribution from the pion field S and the density
3773
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of vector isospin charge a. In particular,

p � p0 1
1
4

� f2
t 2 f2

s �umun tr≠mS≠nSy

1
f2

s

4
tr≠mS≠mSy 1 f22

y tra2, (18)

where p0 � p0�T , m� is the pressure at S � 1 and a � 0,
and r is related to p by Legendre transformation,

r � r0 1
1
4

�K̂ 1 1� � f2
t 2 f2

s �umun tr≠mS≠nSy

1 �K̂ 2 1�
f2

s

4
tr≠mS≠mSy 1 f24

y �K̂ 1 1�f2
y tra2,

(19)

where K̂ � T≠�≠T 1 m≠�≠m. As in relativistic fluid dy-
namics, it can be shown that the conservation of entropy
is a consequence of energy-momentum conservation (17),
baryon number conservation (16), and thermodynamic re-
lations. The conservation of left- and right-handed isospin
currents,

J
m
L � 2

i
4

�� f2
t 2 f2

s �umunS≠Sy 1 f2
s S≠mSy�

1
1
2

uma ,

J
m
R � 2

i
4

�� f2
t 2 f2

s �umunSy≠nS 1 f2
s Sy≠mS�

1
1
2

umSyaS ,

follows from Eqs. (14) and (15).
Equations (14) and (15) are the straightforward gen-

eralization of Eqs. (10) and (11). At small temperatures
and chemical potentials, ft � fs and a � 0, the equation
of motion for S decouples from the fluid flow and coin-
cides with the field equation of the nonlinear sigma model.
When S � 1, the hydrodynamic equations reduce to those
of relativistic fluid dynamics. Thus, our equations include
both the relativistic fluid dynamics and the nonlinear sigma
model as special cases. This makes our equations ideal for
the study of the evolution of disoriented chiral condensates
[10] and any other situation where soft pions are in multi-
ply occupied states. For example, the question of coupling
between sound waves and pions can be addressed using
these equations.

The treatment of this paper could be improved in sev-
eral directions. First, one can include the effects of quark
masses by introducing the mass term tr�MS� 1 H.c. into
the Hamiltonian, where M depends on T and m. Because
of the relatively large pion mass, such a term could be quite
important. This will modify Eq. (14) for S and give addi-
tional contributions to the pressure and the energy density
3774
in Eqs. (18) and (19), but the main features of the theory
remain unchanged [9]. Other next-to-leading terms in the
chiral expansion can be also added. Second, the dissipa-
tive effects can be introduced, although one will certainly
encounter the well-known problems of ambiguity and in-
stability of viscous relativistic fluid dynamics [11].

In conclusion, let us notice that the method developed in
this paper should be applicable, with some modifications,
to the color-flavor-locking phase of finite-density QCD
with Nf � 3 [12]. The only difference is the breaking
of U(1) baryon symmetry. The hydrodynamics contains
one additional hydrodynamic variable [the U�1�B phase],
which gives rise to the superfluid baryon number current.
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