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Comment on “Determination of Phonon
Dispersions from X-Ray Transmission Scattering:
The Example of Silicon”

In a recent Letter [1], Holt et al. showed that x-ray ther-
mal diffuse scattering measurements using synchrotron ra-
diation had high enough resolution for realistic studies of
lattice dynamics in solids. As an example, the force con-
stants and phonon dispersions for crystalline silicon were
determined by a least-squares fit to the measured transmis-
sion scattering intensity. It was nicely demonstrated that
x-ray thermal diffuse scattering had finally become a con-
venient, viable tool in investigating lattice vibrations.

Central to the analysis in the Letter is an expression con-
necting the scattering intensity and the phonon character-
istics, truncated at the first order (one-phonon scattering).
It is the purpose of this Comment to point out that the
formula used in the original Letter, Eq. (1) in [1], is not
completely correct when the unit cell contains more than
one atom, as in the diamond structure. The correct expres-
sion should contain a phase factor arising from the basis,
similar to that in the structure factor.

The scattering intensity from a sample is given by
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where �q is the scattering vector, f� �q� the atomic scattering
factor, and �rm the atomic positions. The Bragg peaks are
obtained if equilibrium positions are used, while thermal
vibrations give rise to an additional diffuse intensity, the
magnitude of which is related to the properties of the col-
lective excitations, i.e., phonons in the crystal. Define the
dynamical matrix in the standard way as
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where a and b are Cartesian indices, n and n0 are atomic
indices in a basis, �R is a lattice vector, �k is the phonon wave
vector, m is the atomic mass, and D

ab
nn0 � �R� is the second

derivative of energy with respect to the ath component
of the displacement of atom n in the unit cell at �R and
the bth component of the displacement of atom n0 in the
unit cell at origin. The dynamical matrix thus defined
is periodic in the momentum space, and one can restrict
�k to be in the first Brillouin zone. If there are s atoms
per unit cell, diagonalizing the 3s 3 3s dynamical matrix
yields the phonon frequency vj� �k� and polarization vector
�en,j� �k� of atom n for mode j � 1, . . . , 3s.

By taking the thermal average of Eq. (1), one obtains
the first-order diffuse intensity for an infinite crystal as
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In Eq. (4), Mn is the Debye-Waller factor, �tn is the position
vector for atom n in the basis, and �q and �k are related
by �q � �k 1 �G, where �G is a reciprocal lattice vector.
Equation (4) is similar to the structure factor term in the
Bragg intensity, but with an extra inner product �q ? �en,j� �k�.
Compared with Eq. (1) in [1], the current expression has
an additional phase factor exp�2i �q ? �tn� and includes the
polarization vector �en,j� �k� for all atoms n. Hence it is
puzzling that an excellent fit was found in [1], which might
be attributed to the large number of fitting parameters.

The general x-ray diffuse scattering intensity has been
discussed in the literature [2,3]. Our expression above is
consistent with these previous results, but is cast in a dif-
ferent form. The result in [2] was represented in terms
of the “scattering matrix” which is a function of the dy-
namical matrix, while a different definition of the dynami-
cal matrix was used in [3].

It is interesting to note that the intensity expression in
Eqs. (3) and (4) contain a projection �q ? �en,j� �k� and that
many scattering vectors �q can probe the same phonons at
the reduced �k. For high symmetry directions in a crys-
tal, for example, the [100] and [111] directions in the
diamond structure, the phonons are purely longitudinal or
transverse. Therefore, by properly choosing the scattering
vectors in different Brillouin zones with different projec-
tion combinations, one will be able to obtain the phonon
frequencies directly along these directions. These phonon
frequencies can then determine the experimental planar
force constants, and provide information on the three-
dimensional force constants [4].
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