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Double-Spin-Flip Resonance of Rhodium Nuclei at Positive and Negative Spin Temperatures
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Sensitive SQUID-NMR measurements were used to study the mutual interactions in the highly polar-
ized nuclear-spin system of rhodium metal. The dipolar coupling gives rise to a weak double-spin-flip
resonance. The observed frequency shifts allow deducing separately the dipolarlike contribution and
the isotropic exchange term. For the first time, such measurements were extended to negative absolute
temperatures as well. We find an effective dipolar moment 0.10mN of which about 15% is attributed
to a conduction electron mediated pseudodipolar interaction. The isotropic exchange is described by
R � 20.9 6 0.1.

PACS numbers: 76.60.–k, 75.50.Ee
Spontaneous magnetic ordering of nuclear spins in
various materials has been made possible by the devel-
opment of cooling techniques at the microkelvin regime
and below [1]. Such investigations are motivated by the
fact that interactions between the nuclear spins are often
fairly simple and theoretical predictions can be made from
first principles. In metals the relevant processes are the
dipolar interaction and the conduction-electron mediated
indirect-exchange interaction.

NMR measurements at low magnetic fields, comparable
with the internal fields arising from the nuclear magnetic
moments, can yield direct information about the mutual
coupling of the spins. In particular, the dipolar interaction
between the nuclei allows a single photon to flip two or
more spins, giving rise to resonances at integer multiples
(harmonics) of the Larmor frequency. Additionally, weak
resonances appear in the parallel-field geometry, where the
NMR excitation field is applied along the static magnetic
field. The existence of these modes has been theoretically
predicted rather early [2,3]. The first experimental demon-
stration was made indirectly by Anderson [4], and later
Kohl et al. were able to observe up to four-spin-flip reso-
nance of hydrogen nuclei by employing SQUID NMR [5].
A study of copper metal [6], where the strength of the
indirect-exchange interaction was determined by observ-
ing a frequency shift of the double-spin-flip resonance at
high nuclear polarization, deserves special attention. More
recently, Moyland et al. investigated theoretically the be-
havior of the double-spin-flip mode in the noble metals
silver and gold [7] that are suitable for studies of nuclear
magnetic ordering [1,8,9].

In the present paper we report the observation of the
double-spin-flip resonance of nuclei in rhodium metal. For
the first time, the phenomenon was observed at a negative
spin polarization as well. To analyze the behavior quan-
titatively we apply a model including a dipolar term and
an isotropic exchange interaction according to the guide-
lines of Refs. [6] and [7]. The essential observables are the
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frequency of the primary Larmor mode and of the second
harmonic, which are slightly shifted from the exact Larmor
and double-Larmor positions. Fortunately, the resonance
frequency is a quantity that can be determined with good
accuracy even for relatively weak signals. The contribu-
tions of the dipolar term and of the exchange term can be
separated, since the latter does not shift the main line, but
does influence the double-spin resonance.

To achieve sufficiently high nuclear polarization of
rhodium (spin I � 1

2 , magnetic moment m � 20.088mN )
we employed a cascade nuclear demagnetization cryostat
[10]. A massive copper-nuclear stage served as a thermal
reservoir below 100 mK for a period of several days. The
sample was polarized in a magnetic field of 7 T for about
60 h during which the spin-lattice relaxation (Korringa
constant k � 8.1 s K [11]) brought the spin system close
to thermal equilibrium with the lattice at 100 200 mK.
Subsequently, the sample was adiabatically demagnetized
to the measuring field below 1 mT. The maximum nuclear
polarization was p � 0.86 corresponding to a spin tem-
perature of about 250 pK in zero magnetic field. Negative
spin polarization was produced by a rapid reversal of the
magnetic field (typically at 400 mT) [12,13]. The best
value so achieved was p � 20.49.

The sample (nominal purity 99.99%) was a slab-shaped
single crystal with dimensions 0.4 3 5 3 25 mm3. The
polarizing field, as well as the NMR pickup coil, were par-
allel to the longest dimension. The static NMR field was
typically along the second longest axis. The demagneti-
zation field within such a sample is approximately that of
an ellipsoid with corresponding primary axes. Our di-
mensions yield demagnetization factors 0.91, 0.08, and
0.01 accordingly [14]. For this crystal, the skin depth was
equal to the thickness of the sample at about 100 Hz. The
eddy-current screening resulted in the poor flipping effi-
ciency for producing negative polarizations.

The response of the spin system was measured by con-
tinuous wave NMR utilizing a dc SQUID. Good signal to
© 2000 The American Physical Society
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noise ratio was achieved by using a planar second-order
gradiometric pickup coil. The excitation amplitude was
typically less than 5 nT in order not to deplete the nuclear
polarization during the sweep through the resonance. The
measuring circuitry had a bandwidth from about 10 Hz to
1 kHz. The nuclear polarization was deduced from the
area of the Larmor resonance at f � 431 Hz. The po-
larization scale was fixed at relatively high temperatures
between 0.3 to 1.5 mK against a Pt NMR thermometer on
the copper nuclear stage.

The existence of the double-spin-flip mode at about
twice the Larmor frequency is perhaps best demonstrated
when the excitation field is parallel with the static field.
The two peaks have comparable intensity, since also the
primary resonance is then given rise to by the dipolar cou-
pling of the spins [3,4]. The absorption peaks in Fig. 1
have been deduced from the decay rate of a low-frequency
susceptibility signal during a frequency sweep of an ac
excitation modulating the static field. The low-frequency
signal (the inset of Fig. 1), driven by 160 nT at 8 Hz per-
pendicular to the static field, is essentially proportional to
the nuclear polarization. The ac modulation amplitude,
2.5 mT, along the static field was adjusted so that it causes
a notable decrease of polarization at the absorption max-
ima. The frequency sweep from 650 to 150 Hz was made
in 90 min. Absorption in arbitrary units was calculated as
�dx8 Hz�dt��x8 Hz.

The double-excitation method of detection described
above has the advantage that it is sensitive exclusively to
the absorption part, so that no dispersion signal is mixed
in by erroneous adjustment of the phase. Also, the base-
line is essentially zero, which allows unbiased determi-
nation of the shape of the double-spin resonance. The
behavior in the tails provides conclusive evidence to dis-

FIG. 1. Parallel field absorption in 150 mT measured by a
double-excitation method (see the text). Inset: Low-frequency
susceptibility signal during a frequency sweep. The decay of
the signal was used to determine the longitudinal absorption as
a function of the excitation frequency.
tinguish between Lorentzian or Gaussian shapes. The
resolution of our measurements was good enough to con-
clude that the main peak is very close to Lorentzian in
shape, whereas the double-spin resonance is Gaussian.
On theoretical grounds, it has been argued that the main
resonance should approach a Lorentzian shape at high nu-
clear polarization [15]. Further, the observations are per-
fectly understandable on the basis of an analysis of the
moments of the harmonic lines within a model including
the dipolar and isotropic exchange terms [3].

The absorption peaks in the parallel-field measurement
of Fig. 1 are shifted slightly from the exact Larmor and
double-Larmor frequencies, f0 and 2f0. However, a
quantitative analysis of the shifts will be made for the
ordinary orthogonal-field geometry only. The static field
was swept at a constant excitation frequency to avoid the
need for further corrections to the data due to varying skin
depth. An example of the data is shown in Fig. 2. The
excitation field was 50 nT at 391 Hz, while the orthogonal
static field was swept from 550 mT to zero in 8 min.
The phase has been adjusted so that the signal separates
approximately to the absorption and dispersion parts. In
such measurements, the double-spin-flip mode was re-
solvable in the frequency range from 131 to 831 Hz. At
lower frequencies it became indistinguishable from the
main line, whereas at higher frequencies it became too
weak, as its intensity is proportional to 1�f2.

According to the theory, the resonances occur at fre-
quencies [6,7]

(
f1 � f0 1

1
2 �1 2 3D�fsp ,

f2 � 2f0 1 2�R 1
1
3 2 D�fsp ,

(1)

FIG. 2. Larmor resonance and the double-spin-flip satellite
at f � 391 Hz and p � 0.57. Absorption and dispersion are
shown in the left and the right frame, respectively. The insets
show closeups of the second harmonic, where a Lorentzian fit
for the main line has been subtracted. Lines marked by G and
L show the required baseline if the double-spin-flip absorption
is fitted by a Gaussian or Lorentzian line, respectively.
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where f0 � mB�Ih is the Larmor frequency, D is the de-
magnetization factor along the static field, and R is the
relative exchange parameter, R � SjJijI�hfs. The “dipo-
lar frequency” is fs � m0m2r�Ih 1 fpd, where a small
pseudodipolar contribution fpd has to be included in order
to explain the observations on rhodium [16,17]. Here, r is
the atom number density. Because of the polarization de-
pendent frequency shifts in Eq. (1), the two modes appear
to cross at a nonzero field value

B3 � 2�2R 1
1
6 2

1
2D�Ihfsp�m . (2)

With p . 0 (and D , 1�3), the crossing occurs at a finite
applied magnetic field, when the exchange interaction is
antiferromagnetic (R , 0), as in rhodium [18]. Close to
the crossing field, the coupling of the two modes with each
other becomes relevant, producing repulsion of the lines.
The resonance frequencies given by the coupled equations
of motion for the single spins and for the pairs of spins
are [6,7]

f6 �
1
2 � f1 1 f2 6

p
� f1 2 f2�2 1 4A � , (3)

where the parameter A describes the strength of the cou-
pling. It results from the terms in the Hamiltonian that
do not commute with the single-spin-flip operator I1.
Deviation from (1) is expected when f1 2 f2 & 2

p
A,

which, however, could not be resolved from our data by
just examining the resonance frequencies.

The measured resonance fields B1 and B2 immediately
give the crossing field as B3 � 2B2 2 B1. The relation-
ship (2) is demonstrated in the inset of Fig. 3, where mea-
surements at the full range of frequencies with varying p
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FIG. 3. Resonance frequency versus magnetic field of the
Larmor and double-spin-flip modes. The data are reduced to
jpj � 0.50. The data fall on two straight lines with the slopes
m�Ih and 2m�Ih (solid lines). The shifts from the origin,
f1�0� and f2�0�, result from the dipolar and indirect exchange
interactions between the spins. The dashed lines represent a
model with coupled equations of spin motion, Eq. (3). The
inset: Polarization dependence of the line crossing field B3 of
the two resonances as deduced from the individual spectra at
various frequencies.
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have been collected. The negative B3 for negative nuclear
polarization indicates that the two peaks have shifted far-
ther apart from each other and no crossing occurs at real-
izable magnetic fields. The slope of the linear fit gives the
quantity 2�2R 1 1

6 2 1
2D�Ihfs�m � 94 6 4 mT. The

contributions of the two parameters of interest, R and fs,
can be separated as shown in the following.

A resonance field versus excitation frequency plot at a
given nuclear polarization can be compiled by correcting
for the p dependence of the data by means of Eq. (1). The
data, reduced to jpj � 0.5, is shown in Fig. 3. Linear
fits to the Larmor and double-spin resonance frequencies
with slopes m�Ih and 2m�Ih, respectively, indicate offsets
f1�0� � 20 6 1 Hz and f2�0� � 243 6 2 Hz at B � 0.
The resonance frequency of the main line is affected to
some extent by the eddy currents induced in the sample.
Their contribution amounts up to a few Hz at intermediate
frequencies and is too small to cause any notable nonlinear-
ity in Fig. 3. The double-spin resonance, on the other hand,
does not suffer any additional shift because the suscepti-
bility is very low even at the resonance. Including the ef-
fects of the eddy currents and of the finite demagnetization
factor D � 0.08, we obtain fs � 74 6 6 Hz and R �
20.9 6 0.1. Pure dipolar interaction in rhodium would
give fs � 54 Hz, and the remaining shift is attributed to
the pseudodipolar exchange term fpd � 20 6 6 Hz [17].
If the isotropic exchange is compared with the actual dipo-
lar interaction alone, i.e., R � SjJijI2�m0m2r, we would
have R � 21.2, which is close to the value adopted by
Hakonen et al. [18]. Neither of the comparisons is en-
tirely meaningful without knowing the true range function
of the pseudodipolar term. This would require detailed in-
formation about the conduction electron band of rhodium
[16]. The simplest approach is to use an effective mo-
ment meff �

p
Ihfs�m0r � 0.10mN . This is evidently

too crude a simplification because the anisotropic nearest
neighbor contribution is then underestimated due to the os-
cillatory nature of the indirect interactions.

Further analysis of the data deals with the relative inten-
sity Ir � I2�I1 of the two peaks. In terms of the coupling
constant A, Ir may be expressed as [6,7]

Ir � A�� f2 2 f2�2

� 4A�� f2 2 f1 1
p

� f2 2 f1�2 1 4A �2

� 4A0��B1 2 B2 1
p

�B1 2 B2�2 1 4A0 �2, (4)

where the last form with A0 � A�Ih�2m�2 is relevant for
field-sweep measurements at a constant excitation fre-
quency. The polarization dependence of the expression
lies in B1 2 B2, reducing the data so that it falls on a
universal curve.

The quantitative intensity analysis is troublesome be-
cause of the weakness of the double-spin-flip resonance
in close vicinity to the main peak, so that the baseline for
the second harmonic is not very well established. This
is evident by looking at the inset of Fig. 2. A Gaussian
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FIG. 4. Relative intensity of the double-spin-flip mode and
the Larmor mode as a function of the separation of the two
peaks. The solid line represents Eq. (4) with A � 1400 Hz2

(A0 � 200 mT2). The dashed lines correspond to the limits
given in the text. The two data sets are obtained by using
Lorentzian or Gaussian fits for the double-spin-flip peak.

fit for the satellite peak produces as good a result as a
Lorentzian fit, but the total areas obtained can differ by
as much as a factor of 4 because of the adjusted baseline
level. Judging on the basis of the parallel-field data, the
second harmonic is Gaussian at least when it is well
separated from the main line. On the other hand, at the
crossing point the two resonances have equal intensities
[see Eq. (4)], whereas experimentally we observe a single
inseparable broadened Lorentzian line. This suggests
that the line shape of the second harmonic changes from
Gaussian to Lorentzian when approaching the line cross-
ing. We were unable to follow such a gradual change by
just looking at the resonance shapes, but the fitted inten-
sities do agree better with Eq. (4), if such an assumption
is made.

The intensity ratios are plotted in Fig. 4, where both
Gaussian and Lorentzian fits are displayed. The data
can be represented by a theoretical curve of Eq. (4) by
using a compromise value of A � 1400 6 600 Hz2. This
number is reasonable and can be compared with that
computed for silver, AAg � 1 3 103 Hz2 [7], whose
relevant parameters are quite similar. For materials with
identical lattice structures A scales as m4r2�I 1 1��I3

[7]. If the value for copper, ACu � 1 3 107 Hz2 [6], is
used as a reference, our result is about 4 times larger than
expected. This could result from the enhancement of the
nearest neighbor coupling due to the pseudodipolar term.
The above value for A was used to implement Fig. 3 with
the coupled mode frequencies f1 and f2 of Eq. (3).
In conclusion, we were able to observe a second-order
resonance in the highly polarized nuclear-spin system of
rhodium at positive and negative spin temperatures by high
sensitivity SQUID-NMR measurements. The observed
line shifts and relative intensities yield direct information
of the mutual interactions between the spins, which is es-
sential for making predictions upon spontaneous magnetic
ordering. Considering the feasibility of making similar
measurements on other metals, such as silver or gold, at
least the parallel-field absorption should be detectable by
our double-excitation method, as in Fig. 1, since then the
weak secondary line is not overwhelmed by the strong
primary peak.

We acknowledge useful discussions with M. Paalanen
and P. Hakonen. This work was supported by the ULTI II
grant of the European Union.

*Permanent address: Dept. Cond. Matt. Phys., Risø Na-
tional Laboratory, 4000 Roskilde, Denmark.

†Present address: VTT Automation, Measurement Technol-
ogy, P.O. Box 1304, FIN-02044 VTT, Finland.

‡Present address: Lyman Laboratory, Harvard University,
Cambridge, MA 02138.

[1] A. S. Oja and O. V. Lounasmaa, Rev. Mod. Phys. 69, 1
(1997).

[2] J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
[3] H. Cheng, Phys. Rev. 124, 1359 (1961).
[4] A. G. Anderson, Phys. Rev. 115, 863 (1959).
[5] M. Kohl et al., J. Low Temp. Phys. 72, 319 (1988).
[6] J. P. Ekström et al., Physica (Amsterdam) 98B, 45 (1979).
[7] P. L. Moyland, P. Kumar, J. Xu, and Y. Takano, Phys.

Rev. B 48, 14 020 (1993).
[8] P. J. Hakonen and S. Yin, J. Low Temp. Phys. 85, 25 (1991).
[9] J. T. Tuoriniemi et al., Phys. Rev. Lett. 75, 3744 (1995).

[10] W. Yao et al. (to be published).
[11] T. A. Knuuttila et al. (to be published).
[12] P. J. Hakonen, S. Yin, and O. V. Lounasmaa, Phys. Rev.

Lett. 64, 2707 (1990).
[13] R. T. Vuorinen, P. J. Hakonen, W. Yao, and O. V.

Lounasmaa, J. Low Temp. Phys. 98, 449 (1995).
[14] J. A. Osborn, Phys. Rev. 67, 351 (1945).
[15] A. Abragam, M. Chapellier, J. F. Jacquinot, and M. Gold-

man, J. Magn. Reson. 10, 322 (1973).
[16] N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679

(1955).
[17] A. Narath, A. T. Fromhold, Jr., and E. D. Jones, Phys. Rev.

144, 428 (1966).
[18] P. J. Hakonen, R. T. Vuorinen, and J. E. Martikainen, Phys.

Rev. Lett. 70, 2818 (1993).
373


