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Calculation of the Inelastic Scanning Tunneling Image of Acetylene on Cu(100)
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A Green function linear combination of atomic orbitals technique is used to theoretically calculate the
“inelastic” scanning tunneling microscope image of a C2H2 molecule adsorbed on Cu(100) and explain
previous experimental results. Our analysis of the inelastic scattering process in terms of the orbitals
shows that a destructive interference occurs in the inelastic scattering by the C-H bending modes. This
results in a much smaller inelastic fraction due to the bending modes as compared to the stretching ones,
and explains why the former cannot be observed experimentally.

PACS numbers: 73.40.Gk, 61.16.Ch, 68.35.Ja, 82.65.Pa
Inelastic tunneling spectroscopy of molecules in an
interface has been known for several decades [1]. How-
ever, only very recently it has become possible to
perform inelastic tunneling experiments with a scanning
tunneling microscope (STM) [2,3]. This newly available
technique, i.e., inelastic electron scanning tunneling spec-
troscopy (IESTS), has a crucial importance since it allows
one to spatially visualize the fraction of inelastically
scattered electrons by the different vibrational modes of
the adsorbate.

It is thus necessary to perform a quantitative calcula-
tion of the inelastic images, in order to interpret those ob-
tained experimentally. Despite the fact that there have been
several modelistic approaches to the problem [4–8], to our
knowledge no calculation of spatially resolved inelastic
currents had yet been published. In this paper we want
to show how such a calculation can be carried out, and
that even a “simple” linear combination of atomic orbitals
(LCAO) approach yields a reasonable agreement with ex-
perimental results. Our approach permits one to analyze
the inelastic current in terms of molecular orbitals. By
doing so we are able to give an intuitive interpretation to
the in principle “mysterious” fact that the C-H bending
modes cannot be detected experimentally.

We will first outline the method to compute inelastic
tunneling currents [8,9]. Then we explain the computa-
tional details of the present calculation, and afterwards we
present and discuss our results, comparing them with the
experimental ones.

The inelastic scattering of an electron by the vibra-
tional modes of an adsorbed molecule is described by the
Hamiltonian
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The inelastic coupling takes place only in a localized
group of orbitals, defined by the operators ĉi and ĉ

y
i . The

coupling of the electron with the vibrational mode m is
given by the j’s, which are defined as [4]
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where Vm is the energy of the vibrational mode. From here
we will assume only one vibrational mode for simplicity,
but the extension to the multiple mode case can be made
straightforwardly. The inelastic matrix thus defined can be
shown to be equivalent to the inelastic coupling elements
used in [10] to calculate the vibrational lifetimes of adsor-
bates due to the electron-hole pair deexcitation mechanism.

The wave function of the electron plus oscillator can be
written as
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where jphn� depends on the phonon coordinates and jCk�
on the electronic ones. The jCk� describe the propagating
eigenfunctions of the electron far from the scatterer. Thus,
in the base of jcn,k� the Hamiltonian elements are

Hnk,n0k0 � dn,n0dk,k0�Ek 1 nV�
1 �

p
n dn,n011 1

p
n0 dn11,n0�

3
X
ij

�ck j i�jij� j jc 0
k�d�V 2 Ek 1 E0

k� .

(4)

If we now transform to a localized orbital base, the
Hamiltonian matrix elements look like

Hni,n0j � dn,n0�Hij 1 nVdij�
1 �

p
n dn,n011 1

p
n0 dn11,n0�jij . (5)

This is the Hamiltonian of a series of equivalent systems
shifted by an energy V with respect to the immediate one,
and coupled by elements jij at a spatially localized region
comprising the adsorbate and its neighboring atoms. This
is schematized in Fig. 1.

The fraction of electrons that is inelastically scattered
leaving the molecule in its nth excited vibrational level
is just the fraction of the current exiting through branch
n when it is injected through branch 00 in Fig. 1. This
© 2000 The American Physical Society



VOLUME 84, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 17 APRIL 2000
T

T

0’

e-vib.  interaction island

T

T

TipSample
Incoming
electron

ξ
0

1

2 √2 ξ

√3 ξ

FIG. 1. Schematic representation of the total Hamiltonian in
Eq. (5). Each of the horizontal chains corresponds to the elec-
tronic Hamiltonian Hn � Hel 1 nVI. They are coupled by the
inelastic coupling matrices j.

fraction, In�Itotal, is obtained in a Green function ap-
proach. In general,
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with the conductances s being given by [8]
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Here the matrix G is the total Green function of the
coupled system (the indexes n and 0 in general represent
groups of many orbitals). The local densities of states rs

and rt correspond to the sample and tip “decoupled” elec-
trodes. Ts and Tt are the Hamiltonian matrices coupling
the “inelastic island” to the sample and tip electrodes. The
experiment in Ref. [3] was shown to be of the “coher-
ent excitation” mechanism type [7]. This means that the
deexcitation time of the molecule is much shorter than the
mean time between tunneling electrons. Thus we just need
to consider the single electron inelastic scattering process,
in the way of Eqs. (6) and (7).

We have applied the above formalism to the case of a
C2H2 molecule adsorbed on Cu(100), in an LCAO ap-
proach. The Hamiltonian of the sample was set following
the way described in [11]. The hopping matrix elements
are those parametrized by Harrison [12]. They are rotated
according to the usual Slater-Koster procedure [12]. As
in [11], the diagonal matrix elements are taken so as to
obtain the orbital levels described in [13]. A Green func-
tion “decimation” technique [14] has been used to project
the electronic structure of the semi-infinite metal onto the
Cu(100) surface atoms. Then, the molecule is coupled to
the Cu(100) surface. In the parallel direction, a periodi-
cal 3 3 3 surface cell has been used. Self-consistency has
been taken into account by allowing a charge transfer to
the molecule, as calculated by [15].

The tip has been modeled in the simplest possible
way, in order not to introduce any effects other than the
sample properties. Therefore, a tip apex with s-orbital
symmetry has been considered. The tip’s Green function
projected onto its apex has been considered a constant
imaginary quantity, so that the local density of states
(LDOS) is constant in the whole energy range. An expo-
nential dependence has been assumed for the tip-sample
hopping matrix elements. The exponent for the tip-copper
elements is such that the conductance vs separation
dependence agrees with the potential barrier of the metal
surface. Exponents for the hopping elements between the
tip and the adsorbate atoms are obtained from the Slater
orbitals given in [16]. For the Cu surface we have used
a single s-band model. The prefactors for the tip-copper
and tip-C matrix elements were determined by a best fit
of the calculated elastic image to the experimental STM
elastic image. In this way we ensure that the electronic
structure of the sample is well described. This completely
determines the Hamiltonian, before calculating the inelas-
tic images. Afterwards, the inelastic images just follow
straightforwardly from Eq. (7).

Once we have the electronic Hamiltonian, we calcu-
late the inelastic coupling matrices according to Eq. (2),
using the experimentally measured frequencies (summa-
rized in Ref. [3]). This has been done for seven different
vibrational modes: the C-H stretches, C-C stretch, C-H
scissor, C-H wag, C-H twist, and molecule-metal stretch
[3]. The inelastic coupling matrix is included to construct
the total Hamiltonian of the system, from which we ob-
tain the total Green function. Then we use Eq. (7) to ob-
tain the elastic and inelastic conductance for each of the
vibrational modes.

First we show in Fig. 2a the calculated elastic conduc-
tance versus the tip’s position, Log�s0�x, y��, for a 7 Å
tip-surface separation. The calculated corrugation is 0.2 Å
(the experimental one reported in [3] is 0.3 Å).

We have then calculated the inelastic conductance
as a function of the tip’s position (Fig. 2b) and the
voltage (Fig. 3a). We find a dominance of the C-H
stretch mode over the other ones, in agreement with the
experimental evidence [2,3]. The calculated profile of
sc-hstr �x, y��s0�x, y� is plotted in Fig. 2b, together with
the experimental points of [3]. The latter corresponds
to “rotation rate” profiles, rather than direct inelastic
current measurements, but they can be assumed to be
fairly proportional to the inelastic current scattered by the
C-H stretch, since this mode is clearly dominant. The
profiles have been calculated keeping the tip 7 Å over
the surface atoms, starting at the center of the molecule
and displacing it laterally in a range of 5 Å, following
two perpendicular lines: along the molecule’s axis and
perpendicular to it. The profile calculated along the axis
of the molecule is higher than the one on the perpendicu-
lar, in agreement with the experiment. When the tip is
laterally displaced 5 Å from the center, the calculated
inelastic fraction decreases by 2 orders of magnitude, also
in agreement with the experimental profile. The slight
bump shape near the center of the molecule is due to a
sharp decrease of the elastic conductance (Fig. 2a). This
feature is more pronounced in the experiment, what can
be attributed to a higher experimental corrugation. The
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FIG. 2. (a) Calculated constant conductance STM image of the
acetylene molecule on Cu(100) (low bias limit, V ! 0). The
white lines indicate the surface net, and the circles mark the
positions of the molecule’s atoms. (b) Calculated inelastic frac-
tion of scattered electrons due to the C-H stretching vibrational
modes plotted as a function of the tip’s lateral displacement
(parallel to the surface), for electrons with E � E

sample
F , and

experimental results from [3]. The 0 displacement corresponds
to the tip located over the center of the molecule. Solid line
(calculated) and circles (expt.): profile along the axis of the
molecule. Dotted line (calc.) and triangles (expt.): profile along
the line perpendicular to the molecule’s axis.

calculated value of sc-hstr�selast is about 20% (about
15% of the total conductance). The fractions experi-
mentally measured by STM inelastic electron-tunneling
spectrosocpy (STM-IETS) are very much tip dependent,
and oscillate between 6% and 12%, being of the same
order of magnitude as our result.

The profiles calculated for other modes are smaller than
the C-H stretch for the experimental range of energies (as
shown in Fig. 3a). Near the center of the molecule, the
C-C stretching mode’s inelastic fraction is 0.3 times that
of the C-H stretch. This ratio might be an overestimation,
being the real ratio smaller, since a 0.3 would in principle
3696
FIG. 3. (a) Dependence of the inelastic conductance for the
different modes as a function of the electron’s energy. The tip
is located over the center of the molecule. The inelastic conduc-
tance has been normalized by the elastic one at the same energy.
The elastic conductance at this tip’s position keeps quite con-
stant along the energy range, changing just by about a factor of 2.
(b) Interference effect in the case of the C-H symmetric stretch-
ing mode and the C-H scissor mode. In the case of the stretching
mode, the inelastic scattering through orbitals 2a1 and 5a1 in-
terferes constructively (solid line). The interference becomes
destructive if we change the sign of j24 and j42 in the inelastic
scattering matrix (dashed line). Similarly, the destructive inter-
ference in the case of the C-H scissor mode (dash-dotted line)
becomes constructive when j24 ! 2j24 (dotted line).

allow the STM-IETS detection of the C-C mode. A more
refined Hamiltonian going beyond Harrison’s matrix ele-
ments might give a smaller ratio. Nevertheless, one would
not expect a significant difference regarding the order
of magnitude.

The clear dominance of the C-H stretch over the C-H
bending modes in the inelastic scattering of electrons is a
quite striking fact. The greater the frequency the smaller
the mean displacement, what implies a smaller inelastic
coupling according to Eq. (2). This argument would
thus oppose both the experimental and the calculated
evidence. In fact, the absolute values of the calculated
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inelastic coupling matrix elements are of the same order
of magnitude for the stretching and bending modes, being
even bigger in the latter case. If we now look at the volt-
age behavior of the inelastic fractions of the conductance,
sinel�E��stotal�E� we find a markedly different behavior
between the modes: while the stretching mode contribution
keeps quite constant in a range of several eV, the bending
modes present a deep decrease near the center of the
graph, and grow even higher than the C-H stretch contri-
bution at high biases. These facts indicate that interference
between several orbitals is taking place in the inelastic
conduction process.

To illustrate this we will compare the symmetric bending
mode (scissor) with the symmetric C-H stretching mode.
Since these are symmetric modes, they do not mix elec-
trons from states with odd symmetry. The tip is on top
of the molecule, so only electrons of even symmetry can
tunnel. Therefore, we can forget about all the odd sym-
metry electrons in the problem, and consider just the four
symmetric molecular orbitals (2a1, 3a1, sp , and 5a1; at
subindexes we will denote them by 2, 3, 4, and 5, re-
spectively). From those orbitals, only one (the highest oc-
cupied molecular orbital, denoted sp by Hoffman [13])
has an appreciable density of states at the Fermi level.
Thus only this orbital carries current elastically to the
tip. However, the inelastic process takes place at more
than just this orbital. Otherwise the inelastic fractions
due to the two modes would be exactly proportional by
jsciss�jstr , which is not the case. Furthermore, the in-
elastic matrix element for the sp orbital in the scissor
mode turns out to be bigger than that in the symmetri-
cal stretching mode. These considerations imply that there
is interference between several orbitals in the inelastic
conduction process.

Even after simplifying the problem to a 4 orbital one
(the Cu atoms affect very little to the inelastic current),
the analysis is still not trivial, since the ji,j matrix has a
dimension of 16 3 16. Nevertheless, only the elements
ji,sp

are important. This can be proven by use of Eq. (7)
and the fact that the three orbitals other than sp have a
much smaller LDOS at the Fermi level than the latter. Thus
the analysis reduces to a comparison of only four numbers
for the two modes.

From these four elements, the bigger ones are j2,4 and
j5,4. Now, sgn�jstr

2,4� � 2sgn�jstr
5,4�, while sgn�jsciss

2,4 � �
sgn�jsciss

5,4 �. This qualitative difference results in a con-
structive interference in the stretch case and a destruc-
tive one in the scissor case. To prove that this is so, we
have changed the sign of j5,4 in the two cases, obtaining
the curves shown in Fig. 3b. It is clear how the quali-
tative behavior of the two modes is exchanged: now the
stretching mode inelastic fraction is smaller and shows
a decrease in the middle of the graph, while the scis-
sor mode increases at that region, and shows a much
bigger value, being the dominating one. Further analy-
sis shows similar interferences taking place for the other
bending modes.
The geometrical origin of the relative signs arises
simply from the fact that (1) the stretching mode affects
more strongly the hopping between the s orbitals at H
and C, while (2) the scissor mode affects that between
the hydrogen s orbital and the carbon p orbital taken
perpendicular to the bond direction. The relative signs of
the molecular wave function at these atomic orbitals differ
between the 2a1 and 5a1 for the first case, and coincides
for the second case, originating the sign relations in j

discussed before.
We have shown how to calculate inelastic images of ad-

sorbed molecules, and have compared with the experimen-
tal ones in the case of an acetylene molecule on Cu(100).
A dominance of the C-H stretch mode over the other
modes has been obtained, in accordance with experimen-
tal evidence. The calculated inelastic profiles are in good
qualitative agreement with those reported experimentally.
As a function of the bias, two qualitatively different behav-
iors have been obtained for the C-H stretching and bend-
ing modes. This difference has been shown to correspond
to an interference phenomenon in the inelastic scattering
process, and is believed to be the reason why the bending
modes have not been detected experimentally.
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