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Fluctuations of the Inverse Participation Ratio at the Anderson Transition
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Statistics of the inverse participation ratio (IPR) at the critical point of the localization transition is
studied numerically for the power-law random banded matrix model. It is shown that the IPR distribution
function is scale invariant, with a power-law asymptotic “tail.” This scale invariance implies that the
fractal dimensions Dq are nonfluctuating quantities, contrary to a recent claim in the literature. A recently
proposed relation between D2 and the spectral compressibility x is violated in the regime of strong
multifractality, with x ! 1 in the limit D2 ! 0.
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Strong fluctuations of eigenfunctions represent one of
the hallmarks of the Anderson metal-insulator transition.
These fluctuations can be characterized by a set of inverse
participation ratios (IPR)

Pq �
Z

ddr jc�r�j2q. (1)

In a pioneering work [1], Wegner found from the
renormalization-group treatment of the s model in 2 1 e

dimensions that the IPR show at criticality an anomalous
scaling with respect to the system size L,

Pq ~ L2Dq�q21�. (2)

Equation (2) should be contrasted with the behavior of the
IPR in a good metal (where eigenfunctions are ergodic),
Pq ~ L2d�q21�, and, on the other hand, in the insulator
(localized eigenfunctions), Pq ~ L0.

The scaling (2) characterized by an infinite set of criti-
cal exponents Dq implies that the critical eigenfunction
represents a multifractal distribution [2]. The notion of a
multifractal structure was first introduced by Mandelbrot
[3] and was later found relevant in a variety of physical
contexts; see [4] for a review. During the last decade, mul-
tifractality of critical eigenfunctions has been the subject of
intensive numerical studies [5]. Among all the multifractal
dimensions, D2 plays the most prominent role, since it de-
termines the spatial dispersion of the diffusion coefficient
at the mobility edge [6].

In fact, to make statement (2) precise, one should specify
what exactly is meant by Pq on its left-hand side. Indeed,
the IPR’s fluctuate from one eigenfunction (or one realiza-
tion of disorder) to another. Should one take the average
Pq? Or, say, the most probable one? Will the results dif-
fer? More generally, this poses the question of the form
of the IPR distribution function at criticality.

In a recent Letter [7], Parshin and Schober addressed
this problem via numerical simulations for the 3D tight-
binding model. Their main claim is that the fractal dimen-
sion D2 is not a well defined quantity, but rather shows
universal fluctuations characterized by some distribution
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function P �D2� of a width of order unity. If true, this
would force one to reconsider virtually all aspects of the
multifractality phenomenon, such as the notion of the sin-
gularity spectrum f�a�, the form of the eigenfunction cor-
relations and of the density response at the mobility edge,
etc. In view of such a challenge to the common lore, the
issue requires to be unambiguously clarified.

We begin by reminding the reader of the existent ana-
lytical results concerning the IPR fluctuations. While the
direct analytical study of the Anderson transition in 3D is
not feasible because of the lack of a small parameter, statis-
tics of energy levels and eigenfunctions in a metallic meso-
scopic sample (dimensionless conductance g ¿ 1) can be
studied systematically in the framework of the supersym-
metry method; see [8] for a review. Within this approach,
the IPR fluctuations were studied recently [8–10]. In par-
ticular, the 2D geometry was considered, which, while not
being a true Anderson transition point, shows many fea-
tures of criticality, in view of the exponentially large value
of the localization length. It was found that the distribution
function of the IPR Pq normalized to its average value �Pq�
has a scale invariant form. In particular, the relative vari-
ance of this distribution (characterizing its relative width)
reads

var�Pq���Pq�2 � Cq2�q 2 1�2�b2g2, (3)

where C � 1 is a numerical coefficient determined by the
sample shape (and the boundary conditions), and b � 1
or 2 for the case of unbroken (respectively, broken) time
reversal symmetry. It is assumed here that the index q is
not too large, q2 ø bpg. These findings motivated the
conjecture [9] that the IPR distribution at criticality has in
general a universal form, i.e., that the distribution func-
tion P �Pq�P

typ
q � is independent of the size L in the limit

L ! `. Here P
typ
q is a typical value of the IPR, which can

be defined, e.g., as a median [11] of the distribution P �Pq�.
Normalization of Pq by its average value �Pq� (rather than
by the typical value P

typ
q ) would restrict generality of the

statement; see the discussion below. Practically speaking,
the conjecture of Ref. [9] is that the distribution function of
the IPR logarithm, P �lnPq�, simply shifts along the x axis
© 2000 The American Physical Society
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with changing L. In contrast, the statement of Ref. [7] is
that the width of this distribution function scales propor-
tionally to lnL.

While the above-mentioned analytical results for the 2D
case are clearly against the statement of [7], their applica-
bility to a generic Anderson transition point may be ques-
tioned. Indeed, the 2D metal represents only an “almost
critical” point, and the consideration is restricted to the
weak disorder limit g ¿ 1 (weak coupling regime in the
field-theoretical language), while all the realistic metal-
insulator transitions (conventional Anderson transition in
3D, quantum Hall transition, etc.) take place in the regime
of strong coupling.

To explore the IPR fluctuations at criticality in the strong
coupling regime, we have performed numerical simula-
tions of the power-law random banded matrix (PRBM)
ensemble. This model of the Anderson critical point intro-
duced in [12] is defined as the ensemble of random Her-
mitean N 3 N matrices Ĥ (real for b � 1 or complex for
b � 2). The matrix elements Hij are independently dis-
tributed Gaussian variables with zero mean �Hij� � 0 and
the variance

�jHijj
2� � a2�ji 2 jj� , (4)

where a�r� is given by

a2�r� �

∑
1 1

1
b2

sin2�pr�N�
�p�N�2

∏21

. (5)

Here 0 , b , ` is a parameter characterizing the en-
semble, whose significance will be discussed below. The
crucial feature of the function a�r� is its 1�r decay for
r ¿ b. Indeed, for r ø N Eq. (5) reduces to

a2�r� � �1 1 �r�b�2�21. (6)

The formula (5) is just a periodic generalization of (6), al-
lowing to diminish finite-size effects (an analog of periodic
boundary conditions).

In a straightforward interpretation, the model describes
a 1D sample with random long-range hopping, the hopping
amplitude decaying as 1�r with the distance. Also, such an
ensemble arises as an effective description in a number of
physical contexts. Referring the reader to Refs. [8,12] for
details (see also [13–15]), we give only a brief summary
of the main relevant analytical findings. The PRBM model
formulated above is critical at arbitrary value of b; it shows
all the key features of the Anderson critical point, includ-
ing multifractality of eigenfunctions and nontrivial spectral
compressibility (to be discussed below). Perhaps the most
appealing property of the ensemble is the existence of the
parameter b which labels the critical point: Eqs. (4) and
(5) define a whole family of critical theories parametrized
by b [16]. This is in full analogy with the family of the
conventional Anderson transition critical points parame-
trized by the spatial dimensionality 2 , d , `. The limit
b ¿ 1 is analogous to d � 2 1 e with e ø 1; it allows a
systematic analytical treatment (weak coupling expansion
for the s model). The opposite limit b ø 1 corresponds
to d ¿ 1, where the transition takes place in the strong
disorder (strong coupling) regime, and is also accessible
to an analytical treatment [17] using the method of [18].
This makes the PRBM ensemble a unique laboratory for
studying generic features of the Anderson transition. Criti-
cality of the PRBM ensemble was recently confirmed in
numerical simulations for b � 1 [19].

We have calculated the distribution function of the IPR
in the case b � 1 for system sizes ranging from N � 256
to N � 4096 and for various values of b by numerically
diagonalizing the matrix Ĥ. The statistical average is over
a few hundred matrices in the case of large system sizes
up to 105 matrices at N � 256. Specifically, we have
considered an average over wave functions having energies
in a small energy interval about the band center, with a
width of about 10% of the bandwidth.

Figure 1 displays our result for the distribution of the
IPR logarithm, P �lnP2� for b � 1. It is clearly seen that
the distribution function does not change its shape or width
with increasing N . After shifting the curves along the x
axis, they all lie on top of each other, forming a scale-
invariant IPR distribution. Of course, the far tail of this
universal distribution becomes increasingly better devel-
oped with increasing N . From the shift of the distribu-
tion P �lnP2� with N we find the fractal dimension D2 �
0.75 6 0.05. Analogous results are obtained for other
values of b and q and will be published elsewhere [17].
Furthermore, the scale invariance of the IPR distribution
is confirmed by analytical study in both limits b ¿ 1 and
b ø 1 [17].

We conclude therefore that the distribution of IPR (nor-
malized to its typical value) is indeed scale invariant, in
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FIG. 1. Distribution of lnP2 at b � 1 for the system size N �
256, 512, 1024, 2048, and 4096. The straight line corresponds
to the power-law asymptotics with the index x2 	 4.16.
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agreement with the conjecture of Ref. [9] and in disagree-
ment with Ref. [7]. A natural question is why the authors
of [7] failed to find this universality. We believe that the
system sizes L used in their numerical simulations were too
small for observing the universal form of P �ln�P2�P

typ
2 ��

in the limit L ! ` [20]. Also, Fig. 3 of [7] shows scal-
ing of P �D2� with lnL not consistent with the claim of the
authors.

The value of the fractal dimension D2 is shown in Fig. 2
as a function of the parameter b of the PRBM model.
The numerical results agree very well with the analyti-
cal asymptotics in the limits of large b, h 
 1 2 D2 �
1�pb [8,12] and small b, D2 � 2b [17]. We have also
calculated the spectral compressibility x characterizing
fluctuations of the number n of energy levels in a suffi-
ciently large energy window dE, var�n� � x�n�. The re-
sults are also shown in Fig. 2 and are in perfect agreement
with the asymptotics x � 1�2pb (b ¿ 1) [8,12] and
x � 1 2 4b (b ø 1) [17], as well. A nontrivial value
of the spectral compressibility 0 , x , 1 (intermediate
between x � 0 in a metal and x � 1 in an insulator) has
been understood to be an intrinsic feature of the critical
point of the Anderson transition [21].

In a remarkable recent work [22], Chalker, Lerner, and
Smith employed Dyson’s idea of Brownian motion through
the ensemble of Hamiltonians to link the spectral statistics
with wave function correlations. On this basis, it was ar-
gued in Ref. [23] that the following exact relation between
x and D2 holds:

x � �d 2 D2��2d . (7)

According to (7), the spectral compressibility should tend
to 1�2 in the limit D2 ! 0 (very sparse multifractal), and
not to the Poisson value x � 1. However, the numerical
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FIG. 2. The fractal dimension D2 (squares) and the spectral
compressibility x (circles) as a function of the parameter b
of the PRBM model. The corresponding b ¿ 1 and b ø 1
analytical asymptotics are shown.
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data of Fig. 2 show that, while being an excellent approxi-
mation at large b (we remind the reader that for our system
d � 1), the relation (7) gets increasingly stronger violated
with decreasing b. In particular, in the limit b ! 0 (when
D2 ! 0) the spectral compressibility tends to the Poisson
limit x ! 1. The same conclusion was reached analyti-
cally in [8] for the PRBM model with broken time rever-
sal invariance. A similar violation of (7) is indicated by
numerical data for the tight-binding model in dimensions
d . 4 [24]. It would be interesting to see why the deriva-
tion of (7) in [23] fails at small b.

Let us now comment on the necessity to distinguish be-
tween the average value �Pq� and the typical value P

typ
q

(cf. Ref. [11]). This is related to the question of the asymp-
totic behavior of the distribution P �Pq� at anomalously
large Pq. It was found in the 2D case [8] under the con-
ditions g ¿ 1 and q2 ø bpg that the distribution has

a power-law tail P �Pq� ~ P
212xq
q with xq � 2bpg�q2.

We believe that the power-law asymptotics with some
xq . 0 is a generic feature of the Anderson transition
point. This is confirmed by our numerical simulations,
as illustrated in Fig. 1. For not too large q the index xq

is sufficiently large (xq . 1), so that there is no essen-
tial difference between �Pq� and P

typ
q . However, with in-

creasing q the value of xq decreases. Once it drops below
unity, the average �Pq� starts to be determined by the upper
cutoff of the power-law “tail,” determined by the system
size. As a result, for xq , 1 the average shows a scaling
�Pq� ~ L2D̃q�q21� with an exponent D̃q different from Dq

as defined from the scaling of P
typ
q (see above). In this

situation the average value �Pq� is not representative and
is determined by rare realizations of disorder. Therefore,
the condition xq � 1 corresponds to the point a2 of the
singularity spectrum with f�a2� � 0. If one performs the
ensemble averaging in the regime xq , 1, one finds D̃q

as the fractal exponent and (after the Legendre transform)
the function f�a� continuing beyond the point a2 into the
region f�a� , 0 [8]. With this definition, the fractal ex-
ponent D̃q ! 0 as q ! `. On the other hand, the fractal
exponent Dq defined above from the scaling of the typi-
cal value P

typ
q (or, equivalently, of the whole distribution

function) corresponds to the spectrum f�a� terminating at
a � a2 and saturates Dq ! a2 in the limit q ! `.

In the region xq . 1 [corresponding to f�a� . 0] the
two definitions of the fractal exponents are identical, Dq �
D̃q. This is in particular valid at q � 2 for the Anderson
transition in 3D and for the quantum Hall transition.

As has been mentioned above, the two limits b ¿ 1
and b ø 1 can be studied analytically. Let us announce
the corresponding results for the IPR statistics; details will
be published elsewhere [17]. As shown in Fig. 3, the
“phase boundary” qc�b� separating the regimes of xq . 1
(Dq � D̃q) and xq , 1 (Dq . D̃q) has the asymptotics
qc � �2pb�1�2 (b ¿ 1) and qc � 2.4056 (b ø 1). No-
tice that this implies D2 � D̃2 for all b. The corresponding
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FIG. 3. “Phase diagram” of the multifractal spectrum. The
phase boundary qc�b� separates the regions of xq . 1 (below)
and xq , 1 (above). The dotted line separates the asymptotic
regimes b ø 1 and b ¿ 1, for which the analytical results have
been obtained [17]. The dashed line is a schematic illustration
of the crossover between the two asymptotics.

power-law tail exponent x2 is equal to pb�2 at b ¿ 1 and
to 3�2 at b ø 1. The values of xq at q , qc (for b ¿ 1)
as well at q . qc are given in Fig. 3.

Finally, we comment on the extent of universality of the
IPR distribution. Like the conductance distribution or the
level statistics [25], the IPR distribution at criticality does
depend on the system geometry (i.e., on the shape and on
the boundary conditions). However, for a given geometry
it is independent of the system size and of microscopic
details of the model and is an attribute of the relevant
critical theory.

In conclusion, we have studied the IPR statistics in the
family of the PRBM models of the Anderson transition.
Our main findings are as follows: (i) The distribution
function of the IPR (normalized to its typical value P

typ
q )

is scale invariant, as was conjectured in [9]. (ii) The scal-
ing of P

typ
q with the system size defines the fractal expo-

nent Dq, which is a nonfluctuating quantity, in contrast
to [7]. (iii) The universal distribution P �z 
 Pq�P

typ
q �

has a power-law tail ~ z212xq . At sufficiently large q one
finds xq , 1, and the average value �Pq� becomes nonrep-
resentative and scales with a different exponent D̃q fi Dq.
(iv) The relation (7) between the spectral compressibil-
ity and the fractal dimension D2 argued to be exact in
Ref. [23] is violated in the strong-multifractality regime.
In particular, x ! 1 in the limit of a very sparse multi-
fractal (D2 ! 0).
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