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Current Bistability and Hysteresis in Strongly Correlated Quantum Wires
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Nonequilibrium transport properties are determined exactly for an adiabatically contacted single-
channel quantum wire containing one impurity. Employing the Luttinger liquid model with interac-
tion parameter g, for very strong interactions g & 0.2, and sufficiently low temperatures, we find an
S-shaped current-voltage relation. The unstable branch with negative differential conductance gives rise
to current oscillations and hysteretic effects. These nonperturbative and nonlinear features appear only
out of equilibrium.

PACS numbers: 72.10.–d, 71.10.Pm, 73.40.Gk
Transport in 1D conductors is one of the focal points of
condensed matter physics. At low energy scales, such ma-
terials have been predicted long ago to behave as Luttinger
liquids (LL) instead of Fermi liquids [1]. Over the past few
years, several possible experimental realizations of LL be-
havior have been reported. In particular, narrow quantum
wires (QW) in semiconductor heterostructures can be op-
erated in the single-channel limit [2,3]. Other realizations
include quasi-1D materials such as long chain molecules
[4], carbon nanotubes [5], or edge states in fractional quan-
tum Hall (FQH) bars [6]. Since the latter are in fact chiral
LLs, where right- and left-moving branches are spatially
separated, FQH edge state transport [7,8] is distinct from
the case of a quantum wire. In this Letter, we emphasize
the important and indeed surprising differences arising for
standard (achiral) LL systems characterized by the interac-
tion parameter g , 1. We focus on the archetype problem
of a spinless single-channel QW containing backscattering
(BS) by one impurity [7].

Our main results are as follows. The current I�U,T , g�
under an applied voltage bias U at temperature T obeys
scaling [I depends only on U and T measured in terms
of the impurity scale TB] and a duality relation connect-
ing the strong and weak BS limits under the simultane-
ous exchange g ! 1�g. Both the scaling function and the
duality relation are different from the FQH case and are
determined exactly. For very strong interactions, g & 0.2,
and low temperatures, the I-U characteristics is multival-
ued, containing an unstable branch of negative differential
conductance (NDC). Once the QW is embedded in a load
circuit, this S-shaped I�U� relation can lead to hysteresis,
current switching, and self-sustained current oscillations
[9]. Such effects could be observed in a QW of very low
electron density.

Coupling of QW to voltage bias.—We focus on a QW
adiabatically connected to ideal time-independent voltage
reservoirs held at electrochemical potentials m1,2 [10–12].
The 1D conductor extending from 2L�2 , x , L�2 is
considered to be a LL, with an impurity of BS strength
l sitting at x � 0. This defines TB � cgl�l�vc�g��12g�,
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where h̄ � kB � 1, vc is the electronic bandwidth, and
cg is a numerical prefactor of order unity (its precise value
is of no interest here and given in Ref. [13]). The Coulomb
interactions take the form HI � �e�2�

R
dx r�x�w�x�,

where r�x� is the electron density and the Poisson
equation is replaced by

ew�x� � u0r�x� with g � �1 1 u0�pyF�21�2, (1)

with the Fermi velocity yF . Here a screening backgate
or other metallic surroundings cause short-ranged interac-
tions within the QW. Since we are dealing with a strongly
correlated non-Fermi liquid system, the well-known Lan-
dauer approach [10] does not apply. In the past, external
voltage sources were often modeled by attaching g � 1
LLs to the ends of the QW [14], but computations become
exceedingly difficult for l . 0 [15]. Therefore we employ
the radiative boundary conditions of Ref. [11] which rep-
resent the natural extension of Landauer’s original ideas
[10] to a strongly correlated 1D metal. Using different ar-
guments, these boundary conditions have been confirmed
and generalized to ac transport [16,17].

Let us briefly summarize the main ideas [11,12]. Sup-
pose one injects the “bare” densities r

0
R and r

0
L at posi-

tions x close to the end of the QW. The average density
r � rR 1 rL [we omit the expectation values for brevity]
is then self-consistently determined by

rR�x� 1 rL�x� � r0
R 1 r0

L 2 ew�x��pyF , (2)

since the band bottom shifts by ew�x�. With Eq. (1) we
then get the local relation rR 1 rL � g2�r0

L 1 r
0
R�, in

agreement with the compressibility of a LL, k � g2�pyF .
Since screening affects only the total charge, see Eq. (1),
we also have rR 2 rL � r

0
R 2 r

0
L. Solving these two

relations for r
0
R�L and using r

0
R�2L�2� � m1�2pyF and

r
0
L�L�2� � m2�2pyF , we obtain the boundary conditions

of Refs. [11,12,16],

g22 6 1
2

rR�7L�2� 1
g22 7 1

2
rL�7L�2� � 6

U
4pyF

,

(3)
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where we put m1 � 2m2 � U�2 with the applied voltage
U and e � 1. We assume full translational invariance
such that the sound velocity y � yF�g (below we set
y � 1). The Sommerfeld-like boundary conditions (3)
are imposed at the left�right end of the conductor at long
times t where the stationary nonequilibrium state has been
reached. Below we assume that the relevant energy scale
(kBT or eU) exceeds y�L, and henceforth take L ! `.

Exact solution and duality.—Like for the tunneling
problem in the FQH effect [8], it is possible to compute
exactly the current out of equilibrium. The basic idea is
first to fold the problem onto the boundary sine-Gordon
model, and then use integrability of the latter [13]. The
final equations governing the physics are quite simple.
For clarity, we restrict ourselves to the case g � 1�p with
p integer. The basic quantities are then pseudoenergies
ej�u� for rapidity u, obeying a set of thermodynamic
Bethe ansatz (TBA) integral equations,

ej�u� � T
X
k

Njk

Z
du0 s�u 2 u0�

2p

3 ln�1 1 e�ek �u0�2mk��T � , (4)

where s�u� � �p 2 1�� cosh��p 2 1�u� and Njk is the
incidence matrix of the following TBA diagram, on which
the labels j, k run:

Here we have defined parameters for the breathers mj �
2 sin jp

2�p21� with j � 1, . . . ,p 2 2, and for the kink and
antikink, m6 � 1 [8]. The latter are the fundamental
charged particles in the integrable description. All the
physical particles are coupled by nontrivial S matrix ele-
ments. However, manipulation of the TBA equations gives
rise to the simpler structure of coupling for the pseudo-
energies represented on the foregoing diagram. The chemi-
cal potentials are mj � 0 for the p 2 2 breathers, and
m6 � 7W�2 for kink and antikink. Here W is determined
self-consistently; see below. Having found the e’s, the
densities of kinks and antikinks are given by s6 � nf6,
where the pseudoenergies e6 are equal, 2pn � de6�du,
and the filling fractions read

f6�u� � 1��1 1 exp��e�u� 7 W�2��T �� . (5)

With these definitions, the final expression for the current
reads

I �
Z

jT11j
2�s1 2 s2�du , (6)

where, with the impurity scale TB ~ expuB defined above,
the tunneling probability is

jT11j
2 � �1 1 exp�22�g21 2 1��u 2 uB���21. (7)
The current is implicitly a function of W , which is self-
consistently determined throughZ µ

jT11j
2 1

1
g
jT12j

2

∂
�s1 2 s2� du �

U
2p

, (8)

where jT12j
2 � 1 2 jT11j

2.
From these equations, it is now straightforward to de-

duce the following identity giving the parameter W in
terms of the physical voltage and current:

U � 2p

µ
1 2

1
g

∂
I 1 W . (9)

In the sequel, we will also use the quantity

V � U 2 2pI � W 2 2pI�g , (10)

whose physical meaning is the four-terminal voltage across
the impurity [11], i.e., the voltage difference measured
by weakly coupled reservoirs on either side of the impu-
rity. We then find that for nonvanishing TB, the current
interpolates between I � 0 and (going back to physical
units) I � �e2�h�U as the applied voltage U is increased.
Similarly, the linear conductance interpolates between
the perfectly quantized high-temperature value G � e2�h
also found in a clean QW [14], and the vanishing low-
temperature (T ø TB) conductance predicted in Ref. [7].
For temperatures above vc or yF�r , where r is the inter-
action range, the conductance saturates before reaching
e2�h in a real QW.

The above equations can be solved in closed form at
vanishing temperature. The solution for arbitrary g is ex-
pressed in terms of two different series expansions, de-
pending on whether the impurity BS is weak or strong. In
the latter case, we find

I � G�p� �eA�p�
X̀
n�1

�21�n11
p

p G�np�
2G�n�G�n�p 2 1� 1 3�2�

3 �eA1D2uB�2n�p21�, (11)

while the boundary condition (3) reads

U � 2G�p�eA 2 �p 2 1�G�p�eA
X̀
n�1

�21�n11

3

p
p G�np�

G�n�G�n�p 2 1� 1 3�2�
�eA1D2uB�2n�p21�.

(12)

Here we have introduced the notations G�p� � p
p

p 3

G���p�2�p 2 1�����G���1�2�p 2 1���� and D � �ln�p 2 1� 2

p ln�p���p 2 1���2. The parameter A follows by solving
Eq. (12) for a given voltage U. Inserting it into Eq. (11)
gives the I-U relation and W � 2G�p�eA. Equations in
the weak BS limit follow from the duality relation de-
scribed below.

The TBA equations are easily solved for any T at g �
1�2, with the result [12,18]

V �W � � 2TB Imc

µ
1
2

1
TB 1 iW�2

2pT

∂
, (13)
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where c is the digamma function and TB � pl2�vc. The
linear conductance is then

G�T � �
e2

h

1 2 cc 0� 1
2 1 c�

1 1 cc 0� 1
2 1 c�

, c � TB�2pT , (14)

with the trigamma function c 0�x�. For high temperatures,
this approaches e2�h, while it vanishes as G 	 T2 at low
temperatures. Notably, while this is the same power law
as in the FQH effect [7], the prefactor is now different.

To get the current for arbitrary values of g, T , and U,
one has to resort to a straightforward numerical solution of
the TBA equations (11) and (12). The linear conductance
can be given in closed form,

G �
e2

h

R
du jT11j

2 df6�duR
du �jT11j2 1 jT12j2�g� df6�du

, (15)

where the filling fractions (5) have to be evaluated at
W � 0.

A remarkable nonperturbative consequence of the TBA
equations is the existence of a duality relation for the cur-
rent valid at any temperature,

I�l,U, g� �
U
2p

2 I

µ
ld ,U,

1
g

∂
, (16)

where ld ~ l21�g [13]. This duality is similar but differ-
ent from the one found in the FQH case [8]. Although,
as in the FQH case, quasiparticles of charge q � ge tun-
nel in the weak BS limit, and electrons with q � e in the
strong BS limit, the coupling of the QW to the reservoirs
modifies the current and gives rise to the new duality (16).

Bistability regime.—The curves for the linear conduc-
tance in a QW are generally similar to those for the FQH
effect, with the main difference that the high temperature
value is now e2�h independent of g. Much more in-
teresting and unexpected physics occurs in the nonlinear
out-of-equilibrium regime for very strong interactions and
low temperatures. The most direct approach to see this is
the quasiclassical limit, g ø 1, at T � 0, which we con-
sider first. In the bosonized theory, after integrating out the
standard boson phase fields away from x � 0 but taking
into account the boundary conditions (3) [12], one is left
with the equation of motion

dF�dt 1 gpTB sinF � gW , (17)

where TB � 2l and the current operator is �F�2p . This
equation can also be obtained from the explicit solution of
the TBA in that limit. For W . pTB, the current grows
proportional to D � �W2 2 �pTB�2�1�2. This is readily
seen from the solution of Eq. (17), which reads in terms
of y � tan�gDt�2�,

tan�F�2� � Wy�t���D 1 pTBy�t�� .

Hence the average over one time period yields


I� �
g

2p
DQ�W 2 pTB� , (18)
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where Q is the Heaviside function. The I�W � curve is
single valued, but by inserting definitions (9) and (10), and
eliminating I , we see that U � F�W� with

F�W� � gW 1 �1 2 g�V �W � (19)

can have several solutions W . Therefore the I�U� rela-
tion is multivalued throughout the regime U1 , U , U2,
where U1 �

p
g�2 2 g� pTB and U2 � pTB. The three

solutions for the current in this regime are I � 0 and

I6�U� �
U

2p�2 2 g�
3 �1 2 g 6

p
1 2 g�2 2 g� �pTB�U�2 � .

(20)

For U , U1, we get only I � 0, and for U . U2, I1�U�
is the only allowed solution. Clearly, on the branch
I2�U�, we have negative differential conductance (NDC),
and therefore this branch is unstable. Such S-shaped
current-voltage relations are familiar, e.g., in nonlinear
semiconductor physics [9] and in charge-density wave
transport [19]. By putting the QW into a properly de-
signed load circuit, self-sustained current oscillations can
be generated [9]. Furthermore, putting a resistance R in
series and applying the voltage Va to the whole circuit,
one has

Va � RI�U� 1 U , (21)

which can easily be solved for I�Va�. For R��e2�h� .

g21 2 1, we get a single-valued I�Va� curve, i.e., the
NDC branch has been stabilized. For smaller R, also the
I�Va� curve will be multivalued. In practice, one then gets
hysteresis, and the current jumps between two branches
(bistability).

How stable is this behavior once thermal and quan-
tum fluctuations are taken into account? Repeating the
above g ø 1 calculation for finite temperature with meth-
ods from Ref. [20], one finds

V �W � � pTB Im
I12iW�2pT �TB�2T �
I2iW�2pT �TB�2T �

(22)

with the modified Bessel function In�z� with complex
order n. The high-temperature expansion (T ¿ TB) of
Eq. (22) predicts bistability to occur for all T , Tc�g�
with

Tc�g ø 1� � TB
p

�1 2 g��16g . (23)

Therefore as g ! 0, the bistability occurs at all tempera-
tures. Bistability is not destroyed by quantum fluctuations
either, as can be checked using the exact solution. At
T � 0, one finds that the NDC disappears for g � 0.2;
Fig. 1. This value gets smoothly lowered as temperature
increases. We stress that the bistability is a true nonpertur-
bative nonequilibrium phenomenon that has no parallel in
the linear conductance [21].

Finally we turn to rather elementary physical reason-
ing explaining the origin of the predicted bistable behav-
ior independent of the details of our boundary condition.
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FIG. 1. Current-voltage relation at T � 0 for various g �
1�p. The current is given in units of �e2�h�TB, and the voltage
in units of TB.

In the presence of impurity BS, a portion V of the volt-
age drops at the impurity site. Then the average current

I� � �U 2 V ��2p, where 1�2p [� e2�h in physical
units] is the dc conductance of the perfect wire. However,
a fluctuation dI of the current must obey

dI � 2�g�2p�dV , (24)

with the associated fluctuation dV of the four-terminal
voltage and the ac conductance g�2p [7]. Equation (24)
reflects the fact that the impurity BS potential l cosF
for the x � 0 boson field F is due to tunneling of
fractional quasiparticles with charge ge [22]. In terms
of the boson field, the current is 
I� 1 dI � �F�2p,
and the voltage fluctuations read dV � 2pl sinF 2 V .
The first term is basically the derivative of the pinning
potential l cosF [22]. With these relations, it is straight-
forward to verify the equation of motion (17). The latter
describes an overdamped particle moving in the tilted
washboard potential 2g�2pl cosF 1 WF�, where the
bias W � U 1 2p�g21 2 1�
I� depends explicitly on
the current. This feedback mechanism together with the
nonlinear pinning potential is responsible for bistability.
The above arguments also suggest that our assumption
of adiabatic coupling to the reservoirs is not essential for
bistability to occur [23].

To conclude, nonequilibrium transport through a spin-
less single-channel quantum wire containing one impurity
has been studied. Using integrability techniques, the ex-
act solution of this interacting transport problem has been
given for adiabatically connected reservoirs. We have dis-
covered bistability phenomena in the current for strong
interactions that should be observable in state-of-the-art
experiments and constitute a hallmark of strongly interact-
ing quantum wires.
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