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Negative Differential Conductivity in Carbon Nanotubes
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A theoretical model and computations of the I-V characteristics of long carbon nanotubes in a strong
axial dc field at room temperature is presented. Negative differential conductivity is predicted. It is
shown that jdI�dV j for metal carbon nanotubes in the region of the negative differential conductivity
significantly exceeds corresponding values for semiconducting ones. The predicted effect would enable
the design of wave-generating nanotube-based diodes for submillimeter and infrared ranges.

PACS numbers: 73.61.Wp, 73.50.Fq
Since the discovery by Iijima [1] of carbon nanotubes
(CNs), a great deal of interest has been focused on these
quasi-one-dimensional monomolecular structures because
of their unique physical properties (mechanical, electri-
cal, optical, etc.) and the rapid experimental progress in
the controlled preparation. Processes of electron transport
in strong external fields when nonlinear effects are con-
stitutive are of great interest for potential applications in
nanoelectronics and for the experimental diagnostic of CN
themselves.

The current-voltage (I-V ) characteristics for tunneling
electrons in individual single-wall CNs at low tempera-
tures were measured in Refs. [2,3]. At such temperatures
kBT ø Ec, DE and conduction occurs through well sepa-
rated discrete electron states; here kB is the Boltzmann
constant, T is the temperature, Ec is charging energy, and
DE � p h̄yF�L is the energy level spacing, with yF as
the Fermi speed and L as the CN length [4]. At the above
condition, the current is produced by the electrons tunnel-
ing through CN in the presence of the Coulomb blockade
induced by the long-ranged (unscreened) Coulomb inter-
action. Consequently, the I-V characteristics observed in
[2,3] are analogous to that obtained via the scanning tun-
neling microscopy [5]. As a result, at low temperatures the
normalized differential conductivity �V�I� �dI�dV � proves
to be proportional to the local density of states. Therefore,
the I-V characteristics reported in Refs. [2,3,5] provide
significant information concerning the electron structure in
CNs. On the other hand, the tunneling in macromolecules
(in particular, CNs) can serve as a basis for the design of
monomolecular transistors [6,7].

In this Letter we report a theoretical phenomenological
analysis of the I-V characteristics of CNs at room tem-
peratures, when kBT . Ec, DE . In our case, the current
is produced by free charge carriers—quasiparticles which
are p electrons moving in the field of the crystalline lat-
tice. The nonlinearity of the I-V characteristic appears
due to the nonlinear properties of the quasiparticle gas.
We predict the negative differential conductivity (NDC)
dI�dV , 0 in CNs in a certain range of the field strength.

Let us consider an undoped single-wall zigzag CN (m, 0)
exposed to a homogeneous axial dc field Ez , Ez � V�L,
where V is the voltage between the CN ends. We shall
0031-9007�00�84(2)�362(4)$15.00
apply the semiclassical approximation considering the
motion of p electrons as a classical motion of free quasi-
particles with dispersion law extracted from the quantum
theory. With the account to the hexagonal crystalline struc-
ture of CNs, the tight-binding approximation gives [8]

E �sDpf, pz� � E s� pz�

� 6g0

∑
1 1 4 cos�apz� cos

µ
a
p

3
sDpf

∂

1 4 cos2

µ
a
p

3
sDpf

∂∏1�2

. (1)

Here g0 � 3.0 eV is the overlapping integral, a � 3b�2h̄,
and b � 1.42 A is the C-C bond length. The 2 and 1

signs correspond to the valence and conduction bands, re-
spectively. In view of the transverse quantization of the
quasimomentum, its transverse component can take m dis-
crete values, pf � sDpf � p

p
3 s�am (s � 1, . . . , m).

Different from pf, we assume pz continuously varying
within the range 0 # pz # 2p�a, which corresponds to
the model of infinitely long CN (L � `). This model is
applicable to the case under consideration because we are
restricted to temperatures and/or voltages well above the
level spacing [9].

The motion of quasiparticles in an external axial electric
dc field is described by the Boltzmann kinetic equation:
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where e is the electron charge, F�p� is the equilibrium
Fermi distribution function, and t is the relaxation time.
The relaxation term of Eq. (2) describes the electron-
phonon scattering [10,11], electron-electron collisions, etc.

Utilizing the method originally developed in the theory
of quantum semiconductor superlattices [12], we can con-
struct an exact solution of kinetic Eq. (2) without assuming
the electric field to be weak. First, note that the distribution
function f�p� is periodic in pz with period 2p�a. Then,
taking into account the transverse quantization, the distri-
bution function can be presented by

f�p� � Dpf
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where frs are coefficients to be found, and d�x� is the
Dirac delta function. The equilibrium distribution function
F�p� can be expanded in the analogous series with the
coefficients as follows:
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0
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Substitution of both expansions into Eq. (2) gives
frs � Frs��1 1 itrV�, where V � aeEz is the Stark
frequency.

The surface current density is defined by the integral
over the first Brillouin zone:
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Further, taking into account the relation yz�pz , sDpf� �
≠Es�≠pz , we can represent Es�pz��g0 by Fourier series
with the coefficients Ers defined similar to (4): Then, in
view of Eqs. (5) and (3), one can obtain
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This equation states the basis for the evaluation of I-V
characteristics. Let us estimate the restrictions to the theo-
retical approach being developed. As it has been stated
above, the quasiparticles motion is described classically by
Boltzmann Eq. (2). Thus, both interband transitions and
quantum-mechanical corrections to the intraband motion
are left out of account in this model. The first approxi-
mation is valid when the condition V & v holds true,
whereas the condition V & dE�h̄ must be fulfilled to uti-
lize the second one. In the above inequalities, v is the
low-frequency edge of the optical transition band, and dE
is the width of the allowed band. For metal CNs, the or-
der-of-magnitude estimate of the edge frequency is stated
as v � 3g0b�2h̄R [13], where R is the CN’s radius. Tak-
ing into account that dE � g0, both restrictions on the
Stark frequency impose the limitation on the external elec-
tric field strength: jEzj & g0�2eR.

The Coulomb electron-electron interaction has been also
left out of account in our approach. The role of this
mechanism as applied to CNs was considered in a num-
ber of papers [9,14–16]. It has been established that the
short-range electron-electron interaction, typical for CN
arrays (“ropes”), have only weak effects at high tempera-
tures. Since the Coulomb interaction in an isolated CN is
unscreened, it manifests itself in another way providing an
observable effect in a wide range of temperatures. There-
fore, the results obtained on the basis of our model are
mainly applicable to CN ropes. For an individual CN, this
model must be modified taking into account the long-range
Coulomb interaction. As it follows from Ref. [9], the
change of the parameter t temperature dependence is ex-
pected as the only result of the Coulomb interaction.
FIG. 1. I-V curves for metal zigzag carbon nanotubes, T �
287, 5 K, t � 3 3 10212.

The I-V characteristics obtained via numerical calcula-
tion of Eq. (6) are presented in Fig. 1 for metal (m � 3q,
q is an integer) and Fig. 2 for semiconducting (m fi 3q)
zigzag CNs. The figures show the linear dependence of jz

on Ez at weak strengths of the external field; it corresponds
to the region of Ohmic conductivity. As Ez increases,
the value ≠jz�≠Ez grows smaller, and at Ez � E�max�

z the
current density reaches the maximum value jmax

z . Further
increase of Ez results in the decrease of jz . Thus, we pre-
dict the region with the negative differential conductivity
≠jz�≠Ez , 0, in the I-V characteristics of CNs.

The external field strength E�max�
z 
 3.2 3 103 V�cm

for the NDC region appears to be unexpectedly weak be-
cause the nonlinearity in the structure under consideration
is determined by the value of aEz; quantum superlattices

FIG. 2. I-V curves for semiconducting zigzag carbon nano-
tubes, T � 287, 5 K, t � 3 3 10212.
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with periods about 1026 cm [12,17], much larger than b,
show approximately the same fields for the NDC manifes-
tation. It means that the nonlinearity in CNs is much higher
than in superlattices. To explain this fact, let us compare
the mechanisms of the nonlinear conductivity in CNs and
in the superlattices. The quantum superlattices are formed
by alternating plain layers of different semiconducting ma-
terials [12], while the lateral superlattices consist of 1D
chains of identical and identically coupled GaAs�AlGaAs
quantum dots [17]. Both structures are characterized by the
dispersion law E �p� � D�1 2 cos�ãpz��, with D as the
overlapping integral and ã � 2a�3. Applying the method
described above to this dispersion law, one can obtain the
relation

jz�Ez� � szzEz��1 1 V2t2� , (7)

instead of Eq. (6). Here szz � limEz!0�≠jz�≠Ez� is the
linear conductivity. Comparing two equations for the cur-
rent density, we can conclude that the specific peculiarity
of the CNs is the presence of the high Stark components
[summation with respect to r in Eq. (6)] which are absent
in (7).

It has been shown in Ref. [12] that the electron mo-
tion in the dc field can be described as the oscillations of
an ensemble of effective harmonic oscillators (Stark com-
ponents) [18] with the frequencies rV. The full current
is a superposition of partial currents of the Stark compo-
nents. Their electrical field strength corresponding to the
maximum current of the rth Stark component decreases
with r as r21 while our calculations show that oscilla-
tor strength of these component decreases slowly. This is
due to the hexagonal crystalline structure of CNs reflected
in dispersion law (1). The number of the unneglectable
components is 70–150 for metal and 200–300 for semi-
conducting CNs. As a result, the role of the high Stark
components in CNs is essential and the integral nonlinear-
ity of the CNs is much higher than in superlattices [12,17].
The dependencies of jz on V for CNs and 1D superlattice
are compared in Fig. 3. The difference between the main
Stark frequencies in the NDC region in metal zigzag CN
(curve 3) and 1D superlattice (curve 1) is about 2 orders.

Let us estimate the possibility to observe the effect under
discussion in doped CNs (BC2N tubes). Such tubes have
rectangular crystalline lattice and, according to [19], their
dispersion law is similar to that of the 1D lattices. There-
fore, the NDC effect in BC2N tubes is expected to appear
at larger field strength comparing with undoped CNs.

Figures 1 and 2 demonstrate that E�max�
z depends on

neither number m nor the conductivity type (metal or semi-
conductor), whereas, jmax

z shows the different dependen-
cies on m for metal and semiconducting CNs. For metal
CNs, jmax

z decreases with m while it increases for semi-
conducting ones. As m ! `, jmax

z for metal and semicon-
ducting CNs tends to the same limit from opposite sides.
Generally, at large m, the I-V characteristics of different
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FIG. 3. Comparison of I-V curves for metal carbon nanotubes
and superlattice, T � 287, 5 K, D � 3 eV, t � 3 3 10212,
teff � 5 3 10213.

CNs are coming close and in the limit case m ! ` they
reduce to I-V characteristic of the plane graphite mono-
layer. It should be noted that the metal CNs exhibit much
larger NDC as compared to semiconducting ones.

The reported theory was also applied to armchair CNs
characterized by the dual index �m, m�. The mathematical
formalism of the theory is the same as described above; the
only difference appears in the dispersion law [8]. The cal-
culations give the I-V curves qualitatively similar to those
represented in Fig. 1. However, at small m the magnitudes
of E�max�

z and jmax
z turn out to be less than for zigzag CNs

with similar radius by the factor approximately 2. Differ-
ent from zigzag CNs, the increase of m leads to the E�max�

z
growing up, and I-V curves for zigzag and armchair CNs
become practically identical at R . 20 nm. Curve 2 in
Fig. 3 represents the I-V characteristic of (6,6) armchair
CN [20].

In our calculations, we assumed the relaxation time t to
be constant for all CNs. Actually, for the electron-phonon
scattering and, in particular, for the electron scattering by
twistons (thermally activated twist deformations of the tube
lattice), t is proportional to m [11]. To investigate this ef-
fect, we have calculated the I-V curves of armchair CNs
with t � m�8p2ct�9b2kBTyF� [11], where ct is the spe-
cific twist modulus, and b gives the linear dependence of
the bond hopping operator on bond length. The calcula-
tions have shown that the scattering by twistons increases
E�max�

z and decreases j≠jz�≠Ezj in the NDC region; the less
m, the stronger this effect. Quantitative changes of the I-V
curves turn out to be insignificant in comparison with the
case of t � const.
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The presence of impurities and lattice defects provides
one more channel of scattering of charge carriers. This
mechanism can be described qualitatively by the substitu-
tion t ! teff � tt1�t 1 t1�21, where t1 is the relaxa-
tion time due to the impurity. The I-V characteristic of
the imperfect (6,6) CN is shown in Fig. 3 (curve 4). By
virtue of teff , t, the impurity effect results in the E�max�

z
increase and, in the NDC region, j≠jz�≠Ezj decrease.

In summary, we have predicted the NDC effect in CNs,
which is expected to be observable in sufficiently long CNs
at room temperatures. Note that the NDC provides the
current instability. It can be expected that simultaneously
applied dc and ac fields will result in the dynamic electron
localization (which is the nonlinear phase of the instabil-
ity) and in the 2D analog of the self-induced transparency,
like it takes a place in the semiconducting superlattices.
The above-mentioned effects are responsible for the ab-
solute negative conductivity which thus is predicted to be
exhibited in CNs. It must result in the appearance of the
absolute negative conductivity zones and active properties
of CNs providing a potentiality for the design of genera-
tive nanodiodes in microwave and infrared ranges. Such a
possibility relates to both single CNs and CN ropes.
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