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We describe experiments on Bénard-Marangoni convection in horizontal layers of two immiscible
liquids. Unlike previous experiments, which used gases as the upper fluid, we find a square planform
close to onset which undergoes a secondary bifurcation to rolls at higher temperature differences. The
scale of the convection pattern is that of the thinner lower fluid layer for which buoyancy and surface
tension forces are comparable. The wave number of the pattern near onset agrees with the linear stability
prediction for the full two-layer problem. The square planform is in qualitative agreement with recent
two-layer weakly nonlinear theories, which fail however to predict the transition to rolls.

PACS numbers: 47.54.+r, 47.20.Dr, 47.52.+ j
Convection in fluids has been a fruitful system for
the study of nonlinear, nonequilibrium patterns for nearly
100 years [1–3]. Bénard’s original experiments [1] used
shallow layers of whale oil, heated from below and open
to the air above. Above a threshold temperature differ-
ence, the oil became unstable to the now classic pattern
of hexagonal flow cells. Many years passed before it
was conclusively shown that surface tension gradients,
or “Marangoni” driving forces, were involved [4,5]. Be-
ginning with Pearson [5], theories of this instability have
traditionally neglected the dynamics of the overlying gas,
replacing it by a constant heat flux boundary condition
on the liquid’s upper surface. This condition is experi-
mentally ill posed, however. Well-controlled experiments
[6–11] always involve two fluid layers: the overlying gas
forms a second layer bounded by a plate on which a con-
stant temperature is maintained. The heat flux across the
gas�liquid interface results from conduction and convec-
tion in both layers and is not uniform once flow begins.
The interface can deform, and therefore its distance from
the upper plate changes the local heat flux [11].

In general, for thick layers, both Marangoni and buoy-
ancy forces are significant [12,13]. Buoyancy in the up-
per layer actively assists or impedes convection in the
lower via surface stresses [13–15]. Until recently, most
experiments have addressed only the limiting case of a
gas as the upper fluid. In this Letter, we present a pre-
cise experimental study of convection in a system of two
immiscible liquids sharing a deformable interface. When
the upper fluid is also a liquid, a much richer range of
pattern phenomena become possible. This much more
complex, experimentally well-posed, two-layer convec-
tion system promises to be an interesting new arena for
the quantitative study of spatially extended patterns [3].

There have been several previous experiments on two-
layer convection in restricted geometries [16], but to our
knowledge, only one previous experiment has been pub-
lished on convection in a laterally extended system [14].
It was restricted to locating the onset of instability, with-
out visualization. More recent experiments have revealed
new effects, including instabilities on heating from above
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and oscillatory convection at onset [17]. On the theoreti-
cal side, the two-layer problem has been the subject of
a complete linear stability analysis [13–15] and several
weakly nonlinear analyses [13,18,19]. The general prob-
lem is well within the range of modern weakly nonlinear
theory and of numerical simulations.

In our experiment the Marangoni forces were com-
parable to the buoyancy forces at the onset of convec-
tion. The dimensionless heat flux across the interface
is �403 larger than in previous studies. This is ex-
pected to have important effects in the nonlinear regime
[18,20]. We used shadowgraph imaging to visualize the
pattern, measured its mean amplitude and wave number
using Fourier techniques, and studied its secondary insta-
bilities. The first pattern found above onset had a square
planform at e � 0.05. Here e � �DT�DTc� 2 1, where
DT is the temperature difference across both layers and
DTc is its value at onset. The mean wave number of this
pattern is in good agreement with the critical value pre-
dicted from linear theory [15]. We did not resolve any
hysteresis at onset. The square planform persisted up to
e � 0.7, where it underwent a transition to a roll pat-
tern. Up to the maximum value reached (e � 1.4), the
scale of the convection cells was determined by the depth
of the lower liquid. We compare our results with recent
nonlinear theory [19] and find qualitative agreement.

The lower fluid was FC-75, a low-viscosity, perflu-
orinated hydrocarbon [21], while the upper was water.
An important parameter is the depth fraction, L � d1�d,
where d1 (d) is the depth of the upper (lower) fluid.
In this paper, we report results for L � 2.18 6 0.04.
The dimensionless heat flux across the interface, which
is uniform below onset, is given by the Biot number
B � L1�LL, where L1 (L) is the thermal conductiv-
ity of the upper (lower) fluid. In contrast to previous
liquid�gas experiments [6–11] for which B � 0.1, in
our experiment L1 . L and B � 4.31 6 0.08, so that
most of the total temperature drop DT falls across the
thinner lower layer.

Water, at a constant temperature T0, bathed the top
surface of a sapphire window which formed the upper
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boundary of the cell [22]. The baseplate was maintained
at a temperature T1 . T0 using a thin-film electric heater
attached to its bottom surface. Both temperatures were
controlled to 61 mK. The experimental control parameter
is DT � T1 2 T0. The cell’s plastic sidewall included a
radial fin [23] to pin the two-fluid contact line. The round
cell had thickness D � d1 1 d � 4.06 6 0.01 mm and
radius r � 41.15 6 0.05 mm. The relevant aspect ratio is
that of the lower fluid, G � r�d � 32.3. The uniformity
of D was 68 mm, checked interferometrically. The top
surface of the window was leveled to 6100 mrad, using
an electronic bubble level.

Both fluids wet all of the surfaces, so configurations
with a single fluid bridging the gap between the top and
bottom plates were difficult to avoid. To prepare the
two-layer configuration, the horizontal cell was filled with
FC-75 which was then displaced by water introduced
above the fin. The interface was made level with the
fin by visually eliminating the meniscus. The resulting
layering was slightly imperfect due to the pinning of small
deformations of the contact line and because the interface
was difficult to see. The filling fraction L was determined
destructively at the end of the experiment by tipping the
cell on edge and measuring the interface position.

The onset of convection and the nonlinear patterns were
visualized by the shadowgraph method [22], using a beam
of light reflected off the mirrored bottom plate of the cell.
The shadowgraph signal therefore contained contrast due
to temperature gradients in both fluids, plus a component
due to deflections at the deformed interface. The latter
effect is small since the fluids are nearly index matched.
We observed that the scale of the pattern in the upper layer
was slaved to that of the lower. Thus, it was not necessary
to disentangle the various contributions to the images in
order to understand the basic planforms.

A typical run consisted of slowly increasing and de-
creasing DT while recording images. The onset of con-
vection occurred at DTc � 0.999 6 0.025 ±C. Convection
entered from one side as a disordered pattern and eventu-
ally filled the cell. We did not observe hysteresis in the
onset. Nonuniformities in d, linked to cell leveling and
contact line deformations, caused a slight rounding of the
bifurcations. The first patterns that emerged at e � 0.05
had a square planform. Square patterns have been observed
previously in Marangoni convection [9], but only at much
higher e as a secondary bifurcation from a hexagonal pat-
tern. Squares at onset are found in binary fluids [24] and in
rotating convection [25]. Our observations are consistent
with a square planform emerging right at onset, but, due
to rounding effects, we cannot exclude the possibility that
the more usual hexagonal pattern exists within the narrow
range 0 , e , 0.05.

Typical patterns are shown in Fig. 1. For increasing
e, a patchy, time-dependent square planform, as shown
in Fig. 1(a), was found between onset and eSR � 0.67 6

0.05, where a transition to rolls was observed. This tran-
sition could easily be located by a significant increase in
the amplitude of the shadowgraph signal shown in Fig. 2.
Near the transition, we found a dynamical coexistence of
squares and rolls [Fig. 1(b)]. The rolls appeared where
squares merged along shared edges, and vice versa. For
e . eSR , the pattern was dominated by rolls with squares
appearing only at grain boundaries [Fig. 1(c)]. The more
ordered roll patterns were very slowly time dependent.
The finned sidewalls had only weak orienting effects on
the rolls. As e was decreased, an ordered square pattern
re-emerged at eRS � 0.67 6 0.05 [Fig. 1(d)]. In all cases,
the patterns had a scale �d, the dimension of the thinner
lower layer.

The characteristic time scale for convection in the lower
fluid is the vertical thermal diffusion time ty � d2�k �
47 s, where k is the thermal diffusivity. We ramped DT
slowly compared to ty , but it was impractical to increase
it more slowly than the much-longer horizontal diffusion
time th � G2ty � 14 h. Thus, some of the disorder we
observe on increasing e may be due to the finite ramp
rate. However, we also performed experiments in which
e was ramped quickly to a value ,eSR and then held
constant for �6th. The resulting square pattern did not
anneal significantly and remained time dependent. Thus,
the disorder may be partially dynamical in origin.

We determined the wave number of the patterns using
Fourier analysis. We found the azimuthally averaged struc-
ture function of a 2562 pixel region of the center of the cell.
The peak in the structure function gave the mean wave
number �k�. Figure 3 compares �k� with the results of lin-
ear stability theory [15]. The dimensionless wave number
k is scaled by the depth of the bottom fluid d. The value
of �k� at small e agrees with the critical value kc � 2.38
from the linear theory.

FIG. 1. Shadowgraph images of the patterns observed. (a) A
disordered square planform at e � 0.48. (b) Coexistence near
the transition from squares to rolls at e � 0.78. (c) Roll plan-
form at e � 1.38. (d) A more ordered square pattern obtained
from (c) upon slowly decreasing e to 0.50.
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FIG. 2. The mean convective amplitude vs the dimensionless
control parameter, showing the secondary bifurcation to rolls at
eSR � eRS � 0.67 (inset on a log scale). The dashed lines are
linear fits from which eSR�eRS was determined. In all figures,
square (circular) symbols indicate the square (roll) planform
was observed, and open (solid) symbols indicate increasing (de-
creasing) e.

To evaluate the linear stability boundary shown in
Fig. 3, all of the material parameters are needed. These
are, for the lower fluid, the kinematic viscosity n, the
density r, and k � L�rCP , where CP is the specific
heat, as well as the corresponding quantities for the
upper fluid and the interfacial surface tension s. All
of these are assumed to be independent of T , accord-
ing to the usual Boussinesq approximation, except s

and the two densities, which are linearly temperature
dependent. Thus, we also require the thermal expansion
coefficient b � �1�r�≠r�≠T for each fluid and the tem-
perature derivative of the interfacial surface tension g �
2≠s�≠T . The negative sign is included so that g . 0.
All of the parameters are known, except s and g. Using
Antonow’s rule [26], we estimated s to be equal to
the difference of the surface tensions measured against
air. The neutral stability boundary is very insensitive
to s, which enters only into the small surface defor-
mations. On the other hand, the remaining parameter
g is crucial to the Marangoni mechanism. We fixed g

by requiring that the linear theory reproduce the correct
measured DTc. The result is g � 0.047 6 0.003 dynes�
cm K. This is consistent within a factor of 2 with
Antonow’s rule [26] applied to the known values of g

measured against air.
One- and two-layer theories of Bénard-Marangoni

convection traditionally scale the problem using the
temperature difference across the lower fluid DTL �
�1 1 1�B�21DT . This scaling is only approximate above
onset, where convection increases the heat transport of
each layer and produces temperature variations along the
interface [13,27]. The Rayleigh and Marangoni numbers
R and M of the lower layer are
3592
FIG. 3. The mean wave number �k�, showing the linear stabil-
ity boundary from Ref. [15] (solid line). Bars indicate the width
of the azimuthally averaged structure function. We find a square
planform for e , 0.7, and rolls otherwise.
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Here, R0 (M0) is the critical value of R (M) in the
absence of Marangoni (buoyancy) forces. In general, in
the two-layer problem R0 and M0 will differ from the
usual critical values for any one-layer model of the lower
fluid. They can be determined from the full two-layer
linear theory as described below. Fixed by the choice of
fluids and depths, a is the fraction of the total forcing due
to buoyancy, while l is proportional to DT .

Figure 4 shows a plot of M vs R. The linear stability
boundary at constant L separates the conduction regime
near the origin from the convecting regime. Its intercepts
are the critical values R0 and M0. This boundary is cal-
culated by holding L and the material parameters constant
while varying d. a ranges from 0 on the M axis to 1 on
the R axis. Above the line a � 1�2, Marangoni forces
dominate; below, buoyancy. For our experimental condi-
tions a � 0.58, so that the two effects are nearly equal.
Increasing l ~ e corresponds to moving outward along
this radial line. The symbols show the values of M and
R obtained, and the secondary bifurcation point.

A weakly nonlinear theory of the full two-liquid prob-
lem has been completed recently by Engel and Swift [19].
They derived a set of amplitude equations, describing the
stability of hexagonal, square, and roll planforms, from
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FIG. 4. The Marangoni number M vs the Rayleigh number
R for the lower fluid, showing the neutral stability boundary
(thick solid line) from the two-layer analysis of Ref. [15].

the complete hydrodynamic equations for both layers, in-
cluding buoyancy and surface tension effects, but neglect-
ing surface deformations. This theory generalizes previous
results of Golovin et al. [18] and Regnier et al. [20]. For
our experimental conditions, Engel and Swift obtained a
very weakly subcritical bifurcation to hexagons at onset,
with a hysteresis in e of �0.01, and a secondary bifurca-
tion to squares at ehs � 0.180 [19]. They did not find a
further bifurcation to rolls. Their results are thus only in
qualitative agreement with our observations. The square
planform we observed below ehs could be the result of in-
homogeneous nucleation [29] occurring at boundaries or
defects. Their amplitude equation model treated only un-
bounded patterns and omitted gradient terms that are im-
portant near defects. As well, a perturbative model such
as theirs applies only in the limit of small e and appar-
ently fails to capture the secondary transition to rolls we
observed at e � 1.

In summary, we have performed experiments on thermal
convection in a system of two-layered liquids under con-
ditions where buoyancy and Marangoni forces are com-
parable. We found a square planform of convection just
above onset, which underwent a transition to a roll pat-
tern at higher control parameter. We compared the pattern
wave number to the linear stability boundary for the full
two-layer coupled problem and found quantitative agree-
ment between the wave number just above onset and the
critical wave number. Recent weakly nonlinear theory, as
applied to our experiment, is in qualitative agreement with
the square patterns found near onset, but not the observed
transition to rolls.
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