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Threshold and Linewidth of a Mirrorless Parametric Oscillator
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We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly
enhanced four-wave mixing in a dense atomic vapor. It is shown that, in the ideal limit, an arbitrary
small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that, due to
the large group velocity delays associated with electromagnetically induced transparency, an extremely
narrow oscillator linewidth is possible, making a narrow-band source of nonclassical radiation feasible.

PACS numbers: 42.50.Gy, 42.65.Hw
Stable and low-noise sources of coherent and nonclassi-
cal radiation are of interest in many areas of laser physics
and quantum optics. Such sources have a wide range of
applications such as frequency standards, optical magne-
tometry, gravitational wave detection, and high-precision
spectroscopy.

The present theoretical work is motivated by recent ex-
periments demonstrating a phase transition to mirrorless
oscillation of counterpropagating Stokes and anti-Stokes
fields in resonant, double-L Raman media [1]. In con-
trast to earlier studies involving instabilities in alkali vapors
[2–5], this oscillation could be achieved with pump fields
of mW power (nanojoule pulse energy) and is accompa-
nied by a dramatic narrowing of the beat signals between
driving and generated fields. Oscillations of this type are
clear manifestations of atomic coherence and interference
effects, which have recently led to many exciting devel-
opments in resonant nonlinear optics [6–9]. In particular,
the unusual efficiency of the present processes is expected
to lead to a new regime of quantum nonlinear optics in
which interactions at a level of a few light quanta are fea-
sible. Furthermore, the photon pairs generated can possess
nearly ideal quantum correlations, resulting in almost com-
plete squeezing of quantum fluctuations [10].

Here we study theoretically the quantum dynamics of
the mirrorless oscillator above threshold. We show that for
an infinitely long-lived atomic dark state an arbitrary small
stationary flux of pump photons is sufficient to maintain
the oscillation. We furthermore analyze frequency locking
and linewidth narrowing of the beat note between oscil-
lation and pump frequencies. In particular, we show that
the beat-note linewidth is given by an expression similar to
the Schawlow-Townes formula for lasers, where the cavity
storage time is replaced by the group-delay time tgr in the
medium. Because of the large linear dispersion associated
with electromagnetically induced transparency (EIT) in op-
tically thick media, the group delay can be extremely large
[11–13], leading to a very small beat-note linewidth. This
effect is analogous to the line narrowing in intracavity EIT
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[14,15]. Since only very small pump powers are needed
to reach threshold, ac-Stark shifts and the associated sys-
tematic effects on the beat-note frequency can be made
very small. The combination of line narrowing and small
pump-power requirements makes the mirrorless paramet-
ric oscillator an interesting novel source of stable and
narrow-linewidth nonclassical radiation. Possible applica-
tions include frequency standards, optical magnetometry,
and few-photon nonlinear optics.

Consider the propagation of four nearly resonant plane
waves, parallel or antiparallel to the z axis, in a medium
consisting of double-L atoms (see Fig. 1). These include
two counterpropagating driving fields with equal frequen-
cies nd and (complex) Rabi frequencies Ef and Eb , and
two generated fields (anti-Stokes and Stokes) with carrier
frequencies n1 and n2 obeying n1 1 n2 � 2nd . The fields
interact via the long-living coherence (decay rate g0) on
the transition between b1 and b2 with frequency splitting
v0 � vb2 2 vb1.

Because of resonantly enhanced four-wave mixing, the
coherent pump fields generate counterpropagating anti-
Stokes and Stokes fields (here described by the complex
Rabi frequencies E1 and E2). For a sufficiently large
density-length product of the medium and for a certain
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FIG. 1. Atoms in double L configuration interacting with two
classical driving fields in forward �Ef� and backward directions
�Eb� and two quantum fields �E1,2�. All optical transitions are
assumed to be radiatively broadened.
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pump-field intensity, the system shows a phase transition
to self-oscillations [1]. The feedback mechanism required
for oscillations is provided here by the gain medium it-
self: A spontaneously generated Stokes photon stimulates
“downstream” a Raman process. As a result an anti-Stokes
photon is generated with a fixed relative phase. This pho-
ton propagates in the opposite direction and stimulates
another scattering event “upstream.” If the phase matching
condition is fulfilled, this causes a second Stokes emission
in phase with the first one closing the feedback cycle. A
crucial condition for the coherence of this mechanism is a
sufficiently long-lived Raman coherence.

We now discuss the transition to self-oscillation and
the classical and quantum dynamics above threshold in
detail. To simplify the analysis we ignore inhomogeneous
broadening and assume equal coupling strength of all fields
as well as equal radiative decays. Furthermore we assume
that the forward driving field Ef is in resonance with the
b2 ! a1 transition, whereas the backward driving field Eb

has a detuning D ¿ jEbj from the b1 ! a2 transition. In
this case linear losses of the fields are minimized.

In order to calculate the medium response we solve
the single-atom density matrix equations in third order of
the Stokes and anti-Stokes fields and assume jDj ¿ g,
jEf,bj ¿ g0, d, where d � nd 1 v0 2 n1 is the two-
photon detuning. In a frame rotating with the carrier fre-
quencies, the propagation of the classical fields can then be
described by the following equations for the slowly vary-
ing complex Rabi frequencies:
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In these equations we have kept ac-Stark induced phase
terms only in lowest order of the generated fields, since we
are interested in the case jEf,bj ¿ jE1,2j. k � �3�8p� 3

Nl2ga is the equal coupling constant of all fields with N
being the atom density, l the average wavelength of the
fields, and ga the common population decay rate out of
the excited states. E1 � eE1ei�Dk2k�D�z , Eb � eEbeikz�D,
with Dk � k2 2 k1 being the phase mismatch.

We note an important feature of the nonlinear coupling
in Eqs. (1) and (2): In contrast to the usual x �3� media,
the lowest-order cross-coupling terms are proportional to
the ratio of the pump fields rather than the product;
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Thus for jEf j � jEbj these terms are independent of the
pump-field amplitudes. We will see later that this leads to
a rather unusual threshold behavior.

In the present system a transition to spontaneous oscil-
lations is possible [1], if the phase matching condition
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is fulfilled. For large values of k, Eq. (6) describes a
pulling of the frequency differences between generated
fields and driving fields towards the ac-Stark shifted fre-
quency of the Raman transition

n1 2 nd1 � nd2 2 n2 �
h�v0 1 �jEb j

2 2 jEf j
2��D�

1 1 h
.

(7)

This equation shows a close analogy with intracavity EIT.
h � ck�2jEf j

2 is a frequency stabilization factor [14].
This factor also governs the group velocity of the eigen-
modes of the system ygr � c��1 1 h� and can be rather
large. For conditions close to the experiments of Ref. [1],
a reduction factor of h � 5 3 106 was measured [13]. In
the limit of large h the beat notes between generated and
pump fields lock tightly to the Raman-transition frequency
of the medium.

We next consider the classical steady state solution of
the propagation problem. In the ideal limit �g0 � 0�,
Eqs. (1)–(4) have four constants of motion: the total in-
tensity of the generated and pump fields jE1j

2 1 jE2j
2

and jEf j
2 1 jEbj

2, as well as Re�E�
fE�

bE1E2� which has
a similar structure to the cubic expression conserved in
three-wave mixing [16]. There is also the somewhat un-
usual constant of motion, jEf j

2 exp�jE1j
2�jEf j

2�. If we
take into account, however, that Eqs. (1)–(4) hold only to
third order in the generated fields, this constant is equiva-
lent to jEf j

2 1 jE1j
2. With this, Eqs. (1)–(4) can be

solved analytically, if the phase matching condition is
approximately fulfilled. Assuming equal input intensi-
ties of the driving fields jEf�0�j � jEb�L�j at z � 0 and
z � L, respectively (L being the cell length), and dis-
regarding linear losses due to the finite lifetime of the
ground-state coherence, one finds, in second order of the
generated fields,

jE1�z�j � E sinq �z�, jE2�z�j � E cosq �z� , (8)

jEf�z�j � �jEf�0�j2 2 E2 sin2q �z��1�2, (9)

where q �z� � kz�D�1 2 E2�2jEf�0�j2�. For kL�D ,

p�2, E � 0. For values of kL�D larger than the critical
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value p�2 there are two solutions,
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with E � 0 being unstable. It should be noted that, in
contrast to degenerate four-wave mixing in usual x �3�

media [17], the threshold condition does not contain the
amplitude of the pump fields. Thus under the ideal condi-
tions assumed here, i.e., for an infinitely long-lived dark
state, an arbitrarily small stationary pump intensity is suf-
ficient to reach the oscillation threshold. Figure 2 shows
the above-threshold behavior of E as a function of kL�D

and the field amplitudes normalized to jEf�0�j inside the
cell. If the system oscillates not too far above threshold,
the depletion of the pump fields is small and we may as-
sume, in the following, constant driving field amplitudes,
jEf�z�j � jEb�z�j � Ed .

To calculate the linewidth of Stokes and anti-Stokes
fields relative to the drive field above threshold, we as-
sume that the generated fields can be represented as a sum
of the classical stationary solutions and a time-dependent
fluctuation �Ê1,2�z, t� � E1,2�z� 1 dE1,2�z, t��. We uti-
lize a standard linearized c-number Langevin approach
in which collective atomic variables and fields are de-
scribed by time- and position-dependent stochastic differ-
ential equations with d-correlated Langevin forces [18].
The diffusion coefficients or noise correlations are derived
using the fluctuation-dissipation theorem and generalized
Einstein relations. We obtain for the Fourier components
of the Stokes and anti-Stokes fluctuations dE1,2�v� �
1�
p

2p
R
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where small fluctuation frequencies �v ø Ed� and a con-
stant phase of the pump field have been assumed. Follow-

FIG. 2. Phase transition to mirrorless parametric oscilla-
tions. Analytic solution for amplitude of generated field for
g0 � 0. Inset: normalized field amplitudes inside medium for
E�jEf �0�j � 0.2.
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ing the procedure of Ref. [18], we find for the dominant
noise correlation

� f1�z, v�f2�z0, v0�	 

k2L
N

i
D

d�z 2 z0�d�v 1 v0� ,

(12)

where N is the number of atoms in the cell, and we have
identified the quantization length defined in [18] with the
length of the cell L.

Solving the inhomogeneous boundary problem for
the Fourier components of the field fluctuations with
dE�

1�0, v� � 0 and dE2�L,v� � 0, one eventually finds
the phase fluctuation of, e.g., dE1. In phase-diffusion
approximation, the linewidth Dn1 of E1 relative to
the pump field is given by �df1�L,v�df1�L,v0�	 �
Dn1d�v 1 v0��v2. Using Eq. (12), we arrive at

Dn1 �
2E4

d

D2

h̄n

Pout
, (13)

where Pout is the output power of the mode.
Equation (13) can be represented in a very instructive

form, if the group-delay time tgr � L�c�1 1 h� is intro-
duced. In the appropriate limit, h ¿ 1, and near threshold
such that kL�D � p�2 the linewidth can be written as

Dn1 �
p2

8
t22

gr
h̄n

Pout
� t22

gr
h̄n

Pout
. (14)

Equation (14) is formally identical to that of an ideal laser
with the cavity decay time replaced by the group-delay
time. In usual four-wave mixing, based on nonresonant
Kerr nonlinearities [2–5], the group velocity is essentially
equal to the vacuum speed of light. In the present scheme,
however, it can be substantially reduced due to EIT.

It is important to emphasize that the photon pairs gen-
erated by the oscillation process near threshold are in
quantum correlated states. This results in a dramatic sup-
pression of intrinsic quantum fluctuations in a quadrature
of the combined mode [10].

In the discussion above we have neglected the relax-
ation rate of the ground-state coherence g0. If this decay
is taken into account, one finds the modified threshold
condition: cos�jL� 1 �g0D���2E2

d� sin�jL� � 0, with
j � k

p
1�D2 2 g

2
0�4E4

d . In particular, oscillation can be
achieved only if E2

d $ g0jDj�2. This can be translated
into a condition for the photon flux F, i.e., the number of
pump photons traversing the cell per unit time. One finds
that the threshold photon flux in each pump beam is equal
to the number N of atoms in the ensemble decaying out
of the dark state per unit time:

Fth � fN g0 , (15)

where f is a numerical prefactor of order unity. Since by
using buffer gases or coated cells very small values of g0
can be achieved, a threshold flux corresponding to only a
few photons in the cell is feasible, leading to an interesting
new regime of nonlinear optics.
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Furthermore, the nonvanishing linear losses resulting
from the decay of the ground-state coherence lead to an
additional noise contribution to the linewidth

Dn1 �
p2

8
t21

gr �t21
gr 1 2g0�

h̄n

Pout
. (16)

This result can easily be interpreted. Pouttgr�h̄n is equal
to twice the number of Stokes or anti-Stokes photons in the
cell. As in a usual laser, photon correlations are maintained
over a time equal to the number of photons multiplied by
the time a single photon stays in the system [19]. The
latter time is here given by the group-delay time (if g0 is
sufficiently small). If the lifetime of the dark state becomes
shorter than the group delay, the phase information carried
by a photon is lost faster and t21

gr is dominated by 2g0.
Thus the minimum linewidth is ultimately determined by
the lower-level coherence decay.

Similar to the case discussed in Ref. [14] for the intra-
cavity system, the present results for the frequency locking
[Eq. (7)] and the linewidth [Eqs. (13) and (16)] are a con-
sequence of the large atomic dispersion associated with
two-photon resonances in phase coherent media. In the
limit of long-lived ground-state coherences, the beat-note
linewidth can be extremely narrow. At the same time
the resonantly enhanced nonlinearity makes it possible to
achieve oscillation with very low pump powers.

In order to see, whether the small intrinsic linewidth can
indeed be exploited, we now estimate the influence of sys-
tematic effects. The most serious limitations arise from
the ac-Stark shifts, as indicated by Eq. (7). At large val-
ues of pump intensities these shifts are large and hence
fluctuations in pump powers and frequencies will result in
associated broadening of the oscillator linewidth. How-
ever, the resonantly enhanced nonlinearity already makes
oscillation possible when E2

d $ g0D, i.e., when the near-
resonant ac-Stark shift E2

d�D exceeds the ground-state co-
herence decay g0. Thus, with stabilized pump frequencies
and intensities, technical fluctuations of the beat frequency
due to ac-Stark shifts could be several orders of magni-
tude smaller than g0. In the experiment of Ref. [1], for
instance, short-term linewidth values below 100 Hz have
been measured even though the transient time broadening
of a Raman transition was about 50 kHz. It is clear that
observation of quantum-limited linewidth of the oscillator
is most likely in the regime of ultralow pump intensities.
It is, however, this regime which is of main interest for
quantum control and manipulation of quantum properties
of few photon fields [10].

In conclusion, we have demonstrated that resonant non-
linear interactions involving atomic coherence can be used
for the efficient generation of nonclassical photon fields
with a stable and narrow beat-note linewidth and small
pump requirements. We expect these features to be of in-
terest in many areas of quantum and nonlinear optics.
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