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We investigate the quantum mechanical process of two-electron tunneling in strong external electric
fields. Numerical solution of a two-electron s-wave model reveals the existence of collective tunnel-
ing ionization in a mode where both electrons stay at equal distance from the nucleus. Otherwise the
lagging electron is immediately recaptured. The corresponding double ionization rate fails to explain
nonsequential multiple ionization in strong-field laser experiments. However, an empirically modified
version of the analytical one-electron tunneling rate of Ammosov, Delone, and Krainov agrees with the
experiments to a surprising accuracy. The reason for this agreement is presently unknown.

PACS numbers: 32.80.Rm, 32.80.Wr, 42.50.Hz
The phenomenon of one particle tunneling through a
potential barrier is one of the most important ionization
mechanisms in strong external fields [1–3] and has been
extensively investigated. In contrast, simultaneous tun-
neling of more than one particle has, to our knowledge,
never really been considered in atomic physics. This is
the more surprising since atomic collective many-particle
effects and correlations are generally under intensive in-
vestigation. For instance, electron-electron correlations
are usually considered responsible for the phenomenon of
“nonsequential” or “simultaneous” multiple ionization in
strong laser fields. A number of simple models [4–10] and
sophisticated numerical calculations [11–13] have been
applied, but the question of the exact physical mechanisms
behind nonsequential ionization is still not entirely settled.

In this Letter, we address the question whether the pro-
cess of simultaneous tunneling of electrons in external
fields exists and may help to explain the experimental
double ionization results. This could be expected since
one-electron tunneling is commonly accepted as the ref-
erence process in single ionization at sufficiently strong
fields. Our investigation was stimulated by the observa-
tion that an empirical, yet unexplained modification of the
one-electron ADK (Ammosov-Delone-Krainov) [3] tun-
neling formula reproduces most of the experimental data
on nonsequential ionization. For a rather comprehensive
answer to this question we take the following steps: First,
we investigate the fundamental quantum mechanical prob-
lem of two-electron tunneling in static electric fields. Both
from analytical model calculations and from the numerical
solution of a (1D 3 1D) Schrödinger equation we find that
(i) collective multielectron tunneling ionization (CTI) does
exist in static fields, and (ii) proceeds through a delicate
dynamical balance in a truly collective mode. Second, we
find that the calculated static two-electron tunneling rate
is far too small to explain the experimental nonsequential
laser ionization for helium. Only at shorter pulse durations
(below the fs range) the CTI process may substantially ex-
ceed the sequential double ionization. Finally, we analyze
the empirical formula for the nonsequential ionization rate
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in strong laser fields in the light of the quantum mechan-
ical CTI results. This raises both new insights and new
questions, but fails to link the formula with a true tun-
neling process, despite close similarities in the mathemat-
ical structure. Thus, the origin of the empirical formula
remains a puzzle after all. However, we emphasize the
empirical formula as a very useful pragmatic tool to quan-
titatively estimate multielectron ionization in strong laser
fields, and as food for further thought.

We first turn to the fundamental quantum mechanical
problem of simultaneous two-electron tunneling in the qua-
sistatic approximation. We start by recalling the single-
electron ionization rate in the tunneling regime by an ac
field with amplitude F, as given by the ADK formula [3]:
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where me, e, and Ei denote the electron’s mass, the ab-
solute value of its charge, and its binding energy in the
state i � �n�, �, m�, respectively. The quantities A and
B are known in analytical form and depend only on Ei

and �n�, �, m�. The dependence of the ionization rate on
E

3�2
i �F is dominated by the exponential factor.
Naively, one may envision CTI of N electrons as

tunneling of one hypothetical quasielectron of mass
Nme, charge Ne, and total binding energy Etot � SNEj .
Assuming that all of the kinetic energy is in the center-
of-mass motion one obtains a CTI rate proportional

to exp�24�
q

2meE3
tot�N��3eF�. Zon [14] arrives at

the same result via a more elaborate calculation which
also yields the correct form of the prefactor. Defining
Eeff � Etot�N , the exponential can be rewritten as

exp�24N�
q

2meE3
eff��3eF�. Thus, considering all pre-

factors, this two-electron tunneling rate turns out to differ
from the one-electron ADK formula essentially in two
points: an additional factor N in the exponential, and the
consistent substitution Ei ! Eeff.
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This analytical result was obtained under the assumption
that the electrons behave like a quasiparticle of N times
the mass and charge throughout the process, which is by
no means ab initio evident. Therefore we have performed
numerical calculations in order to reveal the underlying
dynamics of the process. It is sufficient to restrict oneself
to static fields and one dimension (1D) per electron, for
which we choose a spherical s-wave model. The three-
dimensional degrees of freedom of real electrons are
mimicked by this model since the interelectronic repulsion
is mitigated. It has been used widely in the analysis of
electron scattering and is a simple example of a more
realistic, smoothed Hartree model. The Hamiltonian in
the two radial variables x . 0 and y . 0 is

H�x, y� � T 1 V �x� 1 V � y� 1 V12�x, y� 2 eF�x 1 y� ,

(2)

where T � Tx 1 Ty is the total kinetic energy,
Tx � p2

x�2me, and the nuclear potential is given by
V �x� � 2eZ�x with Z � 2. The interelectronic repul-
sion leads to a screening of the nuclear charge for the outer
electron, thus V12�x, y� � 11�max�x, y�. The external
static electric field F points radially outward. This does
not appear to be realistic; however, we take this model as
an extreme case in which the interelectronic interaction
term can never increase the force pushing the “inner”
electron towards the nucleus, in contrast to collinear 1D
models in which V12 � V �jx 2 yj�. Numerical results
for the ionization rates are obtained from the stationary
complex-energy eigenvalues and eigenvectors represented
on a position space �x, y� grid including absorbing
boundary conditions by means of a complex absorbing
potential [15]. From the wave function we extract the local
probability density flux j�x, y� � Im�C��x, y�=C�x, y��,
visualized in Fig. 1.

The flux diagram reveals the dynamics of the two-
electron tunneling ionization in static fields within the
limits of our model. Most of the ionization proceeds
parallel to the axes at small x or y, which corresponds
to single ionization. We note that we always expect a
nonzero, although very small component of these flux
arrows into the orthogonal direction, corresponding to
tunneling of the remaining tightly bound electron in the
sequential ionization process at large x�small y (or large
y�small x). Flux vectors with considerable nonzero com-
ponents in both coordinates correspond to nonsequential
(or collective) tunneling of both electrons. We observe two
key elements of the collective tunneling dynamics: first,
there is considerable flux emerging near the origin into the
direction of the main diagonal �x � y�, which, however,
weakens quickly as the electron pair moves away from
the nucleus. Second, at larger distances from the nucleus
the flux exhibits a “bistable” behavior: it either follows
closely the main diagonal, indicating a highly correlated
motion of the electrons with x 	 y, or it turns parallel
to one of the axes, indicating capturing of one of the
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FIG. 1. Probability flux density of static-field ionization for
the Hamiltonian (2) at a field strength F � 0.18 a.u. The arrows
give the direction of the flux j and their length is proportional
to the logarithm of jjj, spanning 12 orders of magnitude. The
picture is not symmetric under interchange x–y, although the
wave function is, since the positions of the vectors have not
been chosen symmetrically.

electrons in a state with constant radial coordinate. Hence,
we conclude that simultaneous two-electron tunneling pro-
ceeds only through a highly correlated, although unstable
collective mode where the electrons remain close to each
other, thus partially screening the nuclear charge from
each other. Otherwise, the lagging electron is immediately
recaptured into a quasibound state, from which it tunnels
with a much reduced rate in a sequential manner. We
have performed similar calculations for the widely used
collinear model with V �x, y� � 1�

p
�x 2 y�2 1 a and

2` , x, y , 1`. The flux picture looks very similar to
the one in Fig. 1. Thus, the double ionization flux again
can only leave the nucleus near the diagonal, x � y. At
large x and y, however, the electronic repulsion pushes
the electronic density away from the diagonal. This does
not lead to the recapture of the inner electron if both x and
y are large enough (i.e., the electrons have left the double
ionization tunnel barrier).

The total ionization rate is given by the total flux leav-
ing the region at large values of �x, y�. The border between
the two asymptotic flux directions gives an operational dis-
tinction between the single and the double ionization rate,
the double ionization rate being many orders of magnitude
smaller than the rate for single ionization. The collective
double ionization flux turns out to be in good agreement
with the analytical formula by Zon [14], but much too
low to explain the nonsequential ionization yield in strong
laser fields. In fact, the calculated doubly charged-ion
yield through CTI at the commonly used pulse lengths
is only slightly larger than the calculated yield through a
sequential tunneling ionization process. Thus, the rele-
vance of CTI appears to be considerably less than other
mechanisms, notably the so-called “rescattering” model,
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even though the latter also appears to lie well below the
experimental results [10]. Hence, we conclude that CTI,
although it clearly exists, does not explain the experimen-
tal data on nonsequential ionization in strong laser fields.

There are, however, several situations where CTI is the
dominant mechanism of double ionization in a static field,
at least when saturation effects can be completely ne-
glected. First, recalling that there is no single rate for se-
quential ionization, we note that any comparison between
sequential and nonsequential ionization depends on the ob-
servation time window. In particular, for sufficiently short
times CTI will always be dominant, no matter how small
it is. Second, this time domain can be substantially pro-
longed if one ionization potential is much smaller than the
other, such as is the case in H2. Then, owing to the non-
linear dependence of the exponent in the ADK formula on
the binding energy, the CTI rate may even exceed the ion-
ization rate of the second electron, the bottleneck in the se-
quential process, at any relevant field strength. For normal
ground state atoms, such as the noble gases, CTI exceeds
the second electron’s ionization rate only in the limit of
very high field strengths, as first pointed out by Zon [14].

With this theoretical background we now return to our
empirical formula. It is a fact that a simple empirical modi-
fication of the one-electron ADK tunneling rate (1) yields
surprisingly good agreement with experimental N-electron
ionization in strong laser fields. Technically, the modi-
fication consists of the mere replacement of the one-
electron binding energy Ei in the ADK rate (1) by the
effective one-electron binding energy Eeff. The effective
quantum number n� is given by Eeff � Z�2�2n�2, where
Z� � Z 2 s is the effective nuclear charge. We use a
shielding factor s � 0.3 [16] in all of our calculations.

We emphasize that a deviation of only a few percent
from the correct value of Eeff completely destroys the
agreement. In the light of collective tunneling, we have
seen that the dependence on Eeff is a characteristic feature
which follows directly from the N-electron tunneling dy-
namics: Since the electrons must stay closely together in
3552
order to escape, the amount of work spent on each electron
in an equivalent zero-field condition, i.e., the “zero-field
binding energy,” is exactly Etot�N . On the other hand,
starting from the correct CTI rate we are forced to drop a
factor N (where N is the number of electrons) in the expo-
nential in order to arrive at the empirical formula. Neither
the ADK rate modification nor the CTI rate modification
has yet been justified theoretically, but each one appears se-
vere enough to rule out CTI—or even tunneling at all—as
the underlying physical mechanism, despite the apparent
close relation in the mathematical structure.

For illustration, in Fig. 2 we compare the results of the
empirical formula to experimental ion yields. The solid
curves have been calculated from rate equations in the
usual manner [9]. We note that for any given atom there
exists only one free parameter in order to adjust one (and
only one) charge state yield for one single intensity to the
experiment.

Figures 2(a) and 2(b) show the double ionization of he-
lium and neon (Eeff � 39.4 and 31.3 eV, respectively)
[7,9]. In both cases the characteristic double ionization
structure (“knee”) lies several orders of magnitude above
the sequential result (dotted line), and is reasonably well
reproduced by the empirical formula (solid line). In neon
a small deviation is obvious in the vicinity of the knee,
but is not more than a factor of 3. In helium, the formula
deviates progressively towards lower intensities, while in
neon it nicely follows the experimental data over 7 orders
of magnitude.

We have also performed first ionization yield measure-
ments on metal vapors [17] to test the empirical formula
beyond closed-shell rare gases. Specifically, we investi-
gated the double ionization of In1 (a heliumlike system
with similar valence electron binding energy Ei , but dif-
ferent Eeff), for which we found the predictions to be very
well confirmed. Multiple electron ionization (N . 2)
in the heavy rare gases Ar, Kr, and Xe [9] is shown in
Figs. 2(c)–2(e): A good, in some cases perfect, agreement
for the doubly and triply charged ion yields is achieved,
FIG. 2. Multiple ion yield in a laser pulse. (a) Helium, experimental data from [7]; (b) neon, (c) argon, and (e) xenon, experimental
data from [9]; (d) krypton, experimental data from [17]. Markers: experimental data; full curve: empirical formula, using rate
equations; dotted curve: ADK formula using purely sequential ionization.
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extending in Kr even to Kr41 data, obtained at our labo-
ratory [17]. Here the application of the empirical formula
to multiple ionization reveals additional information on
the ionization mechanism, namely, the pathways in the
multiple ionization cascades. For instance, in the case of
the Kr41 ion yield, the simultaneous double ionization of
Kr21 is dominant only in the vicinity of the saturation
intensity of Kr31, at about 1015 W�cm2, whereas the other
intensity regions are dominated by simultaneous triple
ionization of Kr1.

Interestingly, we have successfully reproduced experi-
mental ionization yields for different laser frequencies,
although the empirical formula, since it is based on the
ADK rate (1), is inherently independent of the laser wave-
length. Experimental results on multiple ionization of ar-
gon at 1053 nm [9] and helium at 248 nm [18], which
differ from the results at 800 nm, are again satisfactorily
described. Obviously, the different yield curves are simply
due to the longer laser pulse duration of about 500 fs in
both experiments, which substantially alters the ion yields
(as confirmed by the rate equations) even though the ion-
ization rates themselves are unchanged. Furthermore, we
confirm the absence of a knee structure in the ion yield
data for ionization of Xe and Kr in a strong CO2 laser
field at 10 mm [19]. Our calculation predicts that the knee
should appear just below the laser intensity range studied in
Ref. [19].

There is a systematic underestimate of the experimental
rates at lower laser intensities, which is expected from
the exponent in the empirical formula, as opposed to the
experimentally observed weak-field behavior of nonse-
quential ionization [7,9]; incidentally, the deviation is most
pronounced in the case of helium double ionization. Simi-
lar asymptotic deviations are observed in true one-electron
tunneling processes. Finally, we point out that we have
not considered the possibility of extending the empirical
formula to cover the case of elliptical polarization of the
laser field.

In conclusion, there are two main messages of the
present Letter. First, we have investigated the dynamics
of the two-electron tunneling process in external electric
fields, a phenomenon which has received little or no
attention in the past, although being of fundamental
nature. We find that two-electron tunneling exists, and
is dominated by a highly correlated mode where the two
electrons remain at equal distances from the nucleus,
otherwise the lagging electron is immediately recaptured.
The total ionization rate of this collective tunneling mode
is small; in particular, it is far too small to account for
the observed nonsequential double ionization in external
laser fields. Second, we found a simple empirical formula
for N-electron ionization in strong laser fields, which
reproduces most of the existing experimental data for
linear laser polarization to a surprising accuracy and
without free parameters over several orders of magnitude
below saturation intensity. The origin of this agreement
and, in particular, the theoretical background for this
formula are unknown at this time. However, such a simple
analytical expression is interesting in its own right as it
greatly facilitates, e.g., large-scale plasma computations,
if the limits of applicability are reliably known.
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