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It is found that the suppression due to two-body AN-3%N coupling solves the overbinding prob-
lem in 3 He but it, in turn, causes a severe underbinding in the four-body systems. The shortage
of this binding is overcome by introducing explicitly the A-3 coupling which is equivalent to the
ANN three-body force. This three-body force becomes strong in the 0" states of 4 H and 4 He according
to the coherently added enhancement. The 0*-1* splitting in 4 H and % He is found partly due to the
AN spin-spin interaction and partly due to the A-2, coupling in the recent Nijmegen soft-core potential.

PACS numbers: 21.10.Dr, 13.75.Ev, 21.80.+4a, 27.10.+h

There is along standing problem of fitting the experi-
mental A-separation energies of 3H, 4H, 4He and
A He consistently. Dalitz et al. [1] determined areasonable
AN centra force that produces the correct A-separation
energies in 3 H and 4H. Then this potential is found
to be so strong for 3 He that it gives the binding energy
value B, (3 He) of 5.46 MeV, which is much larger than
the experimental value of 3.12 = 0.02 MeV. Shinmura
et al. [2] gave a solution to this overbinding problem by
including a phenomenological AN tensor force. On the
other hand, the significant effect of coupling between 3,
and A has also been proposed in theoretical treatments of
the hypernuclear problem [3]. In this Letter, we inves-
tigate the binding mechanism of the s-shell hypernuclei
and show that some redlistic hyperon-nucleon (YN) inter-
actions will reproduce all the s-shell hypernuclear data by
solving the overbinding problem with ANN three-body
force due to the A-3 coupling.

In order to find some keysto solve the overbinding prob-
lem we prepare various types of potentials simplified from
realistic YN interactions. The potentia whichisdesignated
as DO has only a central part of AN interaction, D1 has
central and tensor parts of AN channel interaction, and D2
has central parts of both AN and 3N channels. All cen-
tral and tensor parts of both channels are included in D3.
These DO-3 potentials give identical phase shiftsat low en-
ergies which are equivalent to the Nijmegen D interaction
[4]. The potentials SC89(S) and SC97f(S) are obtained in
the same way as D3 from the Nijmegen soft-core SC89 [5]
and SC97f [6] interactions.

The A-separation energies of four-body and five-body
hypernuclei are calculated by the Brueckner-Hartree-
Fock method on Gaussian basis:  Reaction matrices
(gyn) [7] from YN interaction are expanded on 20-range
Gaussian functions and are used to obtain a hyperon-
nucleus Hartree-Fock potentia by folding procedure
with nucleon wave functions of Gaussian combination.
This hyperon-nucleus potential is again expanded on
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10-range Gaussian bases, and is used to solve the rela-
tive motion between the hyperon and the core nucleus.
Those bases are prepared in geometrical progressions [8].
Matrix elements of potentials with respect to Gaussian
functions are calculated without approximation, and the
center-of-mass motion of the system is removed by using
the hyperon-nucleus reduced mass.

Now let's see some resultss.  The DO potential
of central type AN interaction gives a good result
By = 2.44 MeV for {He compared to the experimen-
tal one 2.39 *+ 0.03 MeV, but causes the overbinding
of 6.66 MeV in He as it was caculated by Dalitz
et al. [1]. By employing the D2 potential which includes
the AN-XN coupling of central type the binding energy
in the five-body system is reduced to 3.01 MeV, which
is well close to the experimental one. This is due to the
large suppression of the AN-2N coupling in the nucleus.
While this coupling remedies the overbinding problem
in AHe, the suppression effect in turn causes a serious
underbinding problem in the four-body systems. Namely,
we obtain By, = 1.04 MeV for 4He, which is short by
1.35 MeV, by restricting the hyperon wave function in
the A space where 3.-space effects are taken into account
only viaintermediate states of reaction matrices.

How can this underbinding problem of the four-body
system be solved? Gibson et al. [9] first introduced
3.-space components explicitly into the wave function of
4He as

[\He) = ¢a ) He) + \E b3 (0 FH)

- \E g3 He),

where r denotes the relative coordinate between the hy-
peron and the core nucleus. We adopt this idea in order
to take into account ANN three-body force effects due to
the A-3 coupling. Then, the mean potential between the
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hyperon and the nucleus hasa A-3, coupling term, to which
the two-body AN-XN coupling interaction contributes as
follows [10]:
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Since the AN-3N coupling interaction is much stronger
in the spin-triplet state than in the spin-singlet state, the
A-3, coupling effect on B, inthe 0" state becomes much
larger than that in the 1" state. This is due to coherent
enhancement inthe J™ = 0%, J, = 0 state where contri-
butions from [|Ap) < y/2/3[3%n) — /1/312%p)]5"
with §, = —1,0,+1 are added constructively with
weight 1/2 each. On the other hand, contributions
from [|Ap) < v2/3IS"n) — V1313974, and
[lAn) & 1/315%) — 2/31|37 p)ls~+1 are canceled
out and only [[Ap) — 27312 n) — J1/315°p) 2
remains with weight 1/2 in the J™ =17, J, = +1
state. Thus, the attractive effect due to the A-3 cou-
pling in the 0" state is by about 1 order of magnitude,
9 =[(3/2)/(1/2)), aslarge asthat inthe 1™ state. In this
respect the 0" state is an extraordinary state. We define
the coupling process of Eg. (1) “coherent A-3 coupling”
in which a nucleon remains in its ground state after
converting A to 3, giving al the other nucleons an equal
footing to interact with the 3. The other process where a
nucleon changes to an excited state after the interaction is
called “incoherent A-3 coupling,” which is incorporated
into reaction matrices in the present treatment.

By using the potential D2 the ANN three-body force
effect due to the coherent A-3, coupling is estimated to be
al.23 MeV attraction with 1.9% 3-mixing for the0* state
and only a0.01 MeV attraction with 0.01% X-mixing for
the 1™ state. The D2 potential gives By = 0.06 MeV for
31H and B, = 3.01 MeV for 3He. Thus, al the existing
experimental energies of s-shell A hypernuclel are well
reproduced by the simple D2 potential which is given as

v(r) = Veexpl—(r/a)’] + Vs expl—(r/b)’],  (3)

with a = 0.5 fmand b = 1.2 fm. The strength parame-
ters are given in Table I.

In the D2 case the 0*-1* splitting in $H and }He
comes not from the AN spin-spin interaction, but from
the ANN three-body force. This confirms Gibson's state-
ment that the 0*-1" energy difference is not a measure of
the AN spin-spin interaction [11]. However, the D3 po-
tential which simulates most closely the original Nijmegen
D potential brings only asmall 07-1* splitting energy of
0.13 MeV in contrast to the D2 potential. This is due to
the difference of AN-3N potential type, which is of cen-
tral type for D2 but is mainly of tensor type for D3. The
success of D2 in solving the four-body underbinding prob-
lem does not apply to the Nijmegen D potential.
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TABLE |. Parameters of the D2 potential in the even states
(units in MeV).
T=1/2 T =3/2

StaIeS Va V}; Va Vb
AN-AN  1165.0 —105.12

'E SN-AN 90547  —45.085
SN-3N 927.16 —9.9459 1047.0 -—119.24
AN-AN 763.11 —83.938

3E SN-AN 43.344 55.049
SN-3N 539.41 —116.48 1756.1 —35.821

Recently, the Nijmegen group proposed a new version
of soft-core model for YN interaction [6]. We try to solve
the overbinding/underbinding problem by employing the
realistic soft-core interaction models [5,6]. Figure 1 sum-
marizes the results calculated for 4 He together with the
experimental data. The left part and the right part for
each interaction are the cases without and with the 3.-space
component of Eq. (1), respectively. The level splitting at
the left part is due to the AN spin-spin interaction, and
the level shifts shown by the arrow at the right part are the
ANN three-body force effect dueto the A-3, coupling term
of the hyperon-nucleus potential. The coherent X admix-
tureis shown in Fig. 1 for the 0" state and it is negligibly
small for the 1* state.

The SC89(S) potential gives B, (1 He, 07) of 2.51 MeV.
Carlson [12] obtained 1.6 MeV for it by the VMC method
which would be increased a little more by the GFMC
method. As seen in the figure the 0*-1" splitting re-
sult is too large compared to the experimental one due to
too strong AN-3N coupling of SC89(S). This strong cou-
pling causes oversuppression in the five-body system giv-
ing Bx(AHe) of 0.53 MeV which is not inconsistent with
Carlson’s unbound result [12].

The SC97f(S) potential fits rather well all the experi-
mental A binding energies of s-shell hypernuclei. It gives
B, = 0.16 MeV for 3 H [13]. In order to understand the
nature of interaction we divide the AN-2N coupling in-
teraction into its central and tensor parts. The three-body
force effect onthe 0*-1" splitting shownin Fig. 1isdueto
the AN-3N centra coupling, while the large suppression
is mainly due to the AN-3N tensor coupling. The 0"-1*
splitting in 4 Heisfound partly dueto the AN spin-spinin-
teraction and partly due to the AN-X N central coupling in
the case of SC97f(S). The binding B (3 He) is calculated
tobe2.38 MeV for SCI7f(S) and 3.57 MeV for SC97¢(S).
Since the experimental value 3.12 = 0.02 MeV isin be-
tween them, the result for SC97f(S) is not bad and its po-
tential parameters would be adjusted so as to fit the data
without difficulty. A proper ratio of the AN-ZN cen-
tral coupling and tensor coupling is significant in hyperon-
nucleon interactions. It is found that the Nijmegen SCO7f
potential almost meets this requirement.

In summary, the A-3 coupling of the hyperon-nucleus
potential can be divided into the incoherent and coherent
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FIG. 1. The A energy levels calculated for the 0" and 1* states of § He with the D2, SC97&(S), SC97f(S), and SC89(S) potentials.
The level shifts shown by the arrow are mainly due to the ANN three-body force.

parts where the former gives a suppression effect while
the latter provides an attractive effect. The suppression of
the incoherent AN-XN coupling solves the overbinding
problem in 3 He but it, in turn, causes the underbinding
problem in the four-body systems. The shortage of
this binding is overcome by the coherent A-X cou-
pling of which the main part is equivalent to the ANN
three-body force. This three-body force is strong only
in the 0% states of 4 H and 4He among s-shell hyper-
nuclei according to the coherently added enhancement.
It is found that two different types of YN interactions,
D2 and SC97f(S), can solve the overbinding/under-
binding problem. The SC97f(S) results show that the
0"-1" spin doublet splitting in 4He is half due to
the AN spin-spin interaction and half due to the A-3
coupling. Thus, the importance of the coherent A-X
coupling in the four-body systems is revealed for the first
time on the basis of redlistic YN interaction. The coherent
A-3 coupling can also explain the *He(K ~,7 ™) spectra
including the $ He unstable bound state [14].
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