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Dark Energy and the Cosmic Microwave Background Radiation
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We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial
curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical—as
predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological
parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the
energy density of nonrelativistic matter is much less than critical. Together, these results are evidence,
independent of supernovae data, for dark energy in the Universe.

PACS numbers: 98.70.Vc, 95.35.+d, 98.80.Es
Introduction.—Cosmologists have long realized that
there is more to the Universe than meets the eye. A wide
variety of evidence points to the existence of dark matter
in the Universe, matter which cannot be seen, but which
can be indirectly detected by its contribution to the gravita-
tional field. As observations have improved, the phe-
nomenology of the “dark sector” has become richer. While
dark matter was originally posited to explain what would
otherwise be excessively attractive gravity, dark energy
explains the accelerating expansion—an apparently repul-
sive gravitational effect. The most well-known argument
for this additional dark component is based on inferences
of the luminosity distances to high-z supernovae [1]. The
anomalously large distances indicate that the Universe
was expanding more slowly in the past than it is now; i.e.,
the expansion rate is accelerating. Acceleration occurs
only if the bulk pressure is negative, and this could only
be due to a previously undetected component.

Here we argue for dark energy based on another gravi-
tational effect: its influence on the mean spatial curvature.
This argument [2] does not rely on the supernovae obser-
vations and therefore avoids the systematic uncertainties
in the inferred luminosity distances. It is based on a lower
limit to the total density, and a smaller upper limit on the
density of nonrelativistic matter. The lower limit comes
from measurements of the anisotropy of the cosmic mi-
crowave background (CMB) whose statistical properties
depend on the mean spatial curvature [3], which in turn
depends on the mean total density. We find that the CMB
strongly indicates that V . 0.4, where V is the ratio of
the total mean density to the critical density (that for which
the mean curvature would be zero). Upper limits to the
density of nonrelativistic matter come from a variety of
sources which quite firmly indicate Vm , 0.4.

The CMB sensitivity to curvature is due to the depen-
dence on curvature of the angular extent of objects of
known size, at known redshifts. CMB photons that are
penetrating our galaxy today, were emitted from a thin
shell at a redshift of z � 1100 (called the “last-scattering
surface”) during the transition from an ionized plasma to a
neutral medium. The “object” of known size at known red-
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shift is the sound horizon of the plasma at the epoch of last
scattering. Its observational signature is the location of a
series of peaks in the angular power spectrum of the CMB.

One must be careful about using current CMB data to
determine V or any other cosmological parameters for sev-
eral reasons. First, these are very difficult experiments, and
the data sets they produce have low signal-to-noise ratios
and limited frequency ranges, complicating the detection
of systematic errors. Use of different calibration standards
further increases the risk of underestimated systematic er-
ror. To counter these problems, we examine the robustness
of our results to editing of data sets, and check that the
distribution of model residuals is consistent with the stated
measurement uncertainties.

Second, the CMB angular power spectra depend on a
number of parameters other than the curvature. To some
degree, a change in curvature can be mimicked by changes
in other parameters. We therefore vary six parameters
besides the curvature, placing mild prior constraints on
some of these so as not to explore unrealistic regions of
the parameter space.

Finally, existing data are insufficient to firmly establish
the paradigm for structure formation which we have as-
sumed: structure grew via gravitational instability from
primordial adiabatic perturbations. Our conclusions de-
pend on this assumption. At present, this counts as a pos-
sible source of systematic error. Fortunately, future CMB
data will verify (or refute) the paradigm and will also al-
low for the determination of V with greatly reduced model
dependence [4].

The data.—Present data are already so abundant that
they must be compressed before they can serve as the basis
for a multidimensional parameter search. Fortunately, all
data sets have been compressed to constraints on the an-
gular power spectrum, Cl � 2p

R
C�u�Pl�cosu� d�cosu�

where C�u� is the correlation function. Because of the
tremendous reduction in the size of the data sets, this data
compression is called “radical compression” [5].

Here we use the radically compressed data from [6]. In
this compilation, the non-Gaussianity of the power spec-
trum uncertainties has been characterized for a number of
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experiments with a lot of the weight (including all those
plotted with large symbols in Fig. 1); assuming Gaussian-
ity leads to biases [5].

The search method.—We search over a seven-
dimensional parameter space specified by V, Vbh2,
Vcdmh2, VLh2, t, ns, and C10, where Vi � ri�rc and
i � b, cdm, L is for baryons, cold dark matter, and a
cosmological constant, respectively, rc � 3H2

0 ��8pG�
is the critical density, t is the optical depth to Thomson
scattering, ns is the power-law index of the primor-
dial matter power spectrum, and C10 serves as the
normalization parameter. The Hubble constant, H0 �
100h km sec21Mpc21, is a dependent variable in this
space, due to the sum rule: VL 1 Vb 1 Vcdm � V.
Note that, for specificity and simplicity, we have chosen
the dark energy to be a cosmological constant; other
choices (e.g., quintessence [12]) would not significantly
affect our curvature constraints.

For each value of V we vary the 23 other parameters
(six cosmological and 17 calibration—one for each ex-
periment) to find the minimum value of x2 � x

2
d 1 x2

p .
Here x

2
d is the offset log-normal form explicitly given in

Eqs. (39)–(43) of [5], which was shown to be a good
approximation to the log of the likelihood function. In-
formation from non-CMB observations is included as a
prior contribution, x2

p . Unless otherwise stated, we as-
sume that h � 0.65 6 0.1 (a reasonable interpretation of
several measurements [13]) and Vbh2 � 0.019 6 0.003
(from [14] but with a 40% increase in their uncertainty).
We use the Levenberg-Marquardt method to find the mini-
mum value of x2 for each value of V. We stop the hunt
when the new x2 is within 0.1 of the old value. We tested
this method on simulated data and recovered the correct
results.

FIG. 1. Constraints on the angular power spectrum: those
marked with large symbols are TOCO (filled triangles) [7],
CAT (open squares) [8], SK (pentagons) [9], OVRO5M (open
triangle) [10], and MSAM (filled squares) [11]. The model
curves are standard COBE-normalized CDM (dotted line), the
best-fit V � 1 model (solid line), the best-fit V � 0.4 model
(dot-dashed line), and the best-fit V � 0.2 model (dashed line).
The lower panel shows residuals of the best-fit V � 1 model.
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The likelihood of the best-fit model L �V� is propor-
tional to exp�2x2�2�. Ideally we would marginalize over
the non-V parameters rather than maximizing over them.
However, we note that in the limit that the likelihood is
Gaussian, these two procedures are equivalent. More gen-
erally, in order for marginalization to give qualitatively dif-
ferent answers there would have to be, with decreasing V,
a very rapid increase in the volume of parameter space in
the non-V direction with x2’s comparable to the minimum
x2. Inspection of the Fisher matrix leads us to believe this
is not the case.

The Results.—Our main results are shown in Fig. 2: the
relative likelihood [~ exp�2x2�2�] of the different values
of V. Including all the data, the best-fit (minimum x2)
V � 1 model is 2 3 107 times more probable than the
best-fit V � 0.4 model. V , 0.7 is ruled out at the 95%
confidence level.

To test the robustness of this result, we edited out single
data sets suspected of providing the most weight. Most
of these editings produced little change. Only the omis-
sion of TOCO changes things substantially, and even then,
the best-fit V � 1 model is 1503 more probable than
the best-fit V � 0.4 model. We also edited pairs of data
sets: for no CAT and TOCO, no MSAM and CAT, and no
MSAM and TOCO, we find V � 1 to be 120, 2.5 3 106

and 83 more likely than V � 0.4. Also shown, as mea-
sures of goodness of fit, are x2 and the degrees of freedom.
The x2 value for the “All” case is a bit high, but one ex-
pects even higher ones over 8% of the time, so there is no
strong evidence for inconsistencies in the data. As further
indication of the robustness of the result, one can see from
the “TOCO” panel of Fig. 2 that it persists even when all
but a single data set is removed.

For the “All” case, the best-fit V � 1 model has
Vbh2 � 0.019, h � 0.65, VL � 0.69, t � 0.17, and
n � 1.12, and is plotted in Fig. 1. There are degeneracies
among these parameters though and none of them is
strongly constrained on its own. For example, an equiva-
lently good fit (to just the CMB data) is given by the fol-
lowing model with no tilt or reionization: V � 1, Vbh2 �
0.021, h � 0.65, VL � 0.65, t � 0, and n � 1.

FIG. 2. Relative likelihood of V and x2 over the degrees of
freedom (for V � 1) for different collections of data sets.
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We also covered the Vm, VL plane, at each point find-
ing the minimum x2 possible with variation of the re-
maining five parameters. Figure 3 shows the Dx2 � 1,
4, and 9 contours in this plane (which, for a Gaussian, cor-
responds to the 40%, 87%, and 99% confidence regions,
respectively).

Discussion.—Figure 3 also shows constraints on Vm

from clusters. Although constraints on Vm arise from a
variety of techniques (for reviews, see [15]) perhaps the
most reliable are those based on the determination of the
ratio of baryonic matter to dark matter in clusters of galax-
ies [16–20]. With the assumption that the cluster ratio is
the mean ratio (reasonable due to the large size of the clus-
ters) [16,17,19,21], and the baryonic mean density from
nucleosynthesis, one can constrain the range of allowable
values of Vm. Since only the baryonic intracluster gas
is detected, the upper limits on Vm from this method are
better understood than the lower limits. Mohr et al. [19]
find, from a sample of 27 x-ray clusters, that (including
corrections for clumping and depletion of the gas) Vm ,

�0.32 6 0.03��
p

h�0.65. Including the Hubble constant
uncertainty (h � 0.65 6 0.1) this becomes Vm , 0.32 6
0.05. Assuming 10% of the baryons to be in galaxies as
opposed to the gas, as estimated by [16], we find Vm �
0.29 6 0.05. Results from observations of the Sunyaev-
Zeldovich effect in clusters are consistent, though less re-
strictive: Vm � 0.31 6 0.1 [20]. Most other methods
(those that do not rely on the cluster baryon fraction) gen-
erally result in formally stronger upper limits to Vm. This
increases our confidence in the Mohr et al. Vm upper limit,
but we do not quote these stronger constraints due to our
concerns that they are affected by systematic uncertainties
that are more difficult to quantify than those in the baryon
fraction method.

FIG. 3. Likelihood contours in the Vm, VL plane. Contours
show Dx2 � 1, 4, 9. In the “allowed by clusters” region is
the 95% confidence region for Vm from cluster baryon fraction
determinations. The two solid lines encompass the allowed 2s
region from supernova data [1].
There have been a number of other analyses [22] of
CMB anisotropy data which generally obtained weaker
constraints on V [23]. There are technical differences be-
tween our work and previous work: We account for the
non-Gaussianity of the likelihood function, allow for cali-
bration uncertainties, place “sanity” priors on the Hubble
constant and the baryon density, and vary six parameters
in addition to the curvature. Also, much of the strength
of our argument comes from data reported within the
last year.

The verdict from the CMB is now in. It does not depend
on any one, or even any two, experiments. It clearly points
towards a flat Universe and, together with cluster data,
strongly indicates the existence of dark energy. These con-
clusions are consistent with, and independent of, the super-
novae results. The completely different sets of systematic
uncertainties in the two arguments further strengthen the
case. Other constraints in the Vm, VL plane were recently
obtained [24] by combining cosmic flow data with super-
novae observations.

We have neglected several data sets, all of which, if
included, would only strengthen our conclusions. Two of
these are PythonV [25] and Viper [26]. PythonV and Viper
together trace out a peak with centroid near l � 200, and a
significant drop in power by l � 400. They have not been
included because of the strong correlations in the existing
reductions of the data; a new reduction with all correlations
specified will soon be available for PythonV.

Any model without a drop in power from l � 200 to
l � 400 has difficulties agreeing with all the data. Mod-
els fitting this description include the adiabatic models
considered here with V , 0.4 and also topological defect
models, whose breadth is a consequence of the loss of the
coherent peak structure [27].

We have been concentrating on implications of the peak
location, but the height is also of interest. With fixed h, it
is additional evidence for low Vm. The lower Vmh2, the
later the transition from a radiation-dominated Universe to
a matter-dominated Universe and the larger the early ISW
effect, which contributes in the region of the first peak [28].
For flat models, the best fit is at Vm � 0.4 with Vm � 1
four times less likely.

Conclusions.—We have shown that V � 1 is strongly
favored over V � 0.4. This result is interesting for two
reasons. First, V � 1 is a prediction of the simplest
models of inflation. Second, together with the constraint
Vm , 0.4, it is evidence for dark energy.

The CMB can say little about the nature of the dark
energy. A cosmological constant fits the current data, but
then so would many of the other forms of dark energy
proposed over the past few years. The generation and
exploration of new theoretical ideas as to the nature of this
dark energy is clearly warranted.

Measurements of CMB anisotropy have already deliv-
ered on their promise to provide new clues towards an im-
proved understanding of cosmological structure formation
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and fundamental physics. We look forward to greater clari-
fication of the dark energy problem, as well as possibly
new surprises, from improved CMB anisotropy measure-
ments in the near future.
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