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Prospects for Gravitational-Wave Observations of Neutron-Star Tidal Disruption
in Neutron-Star–Black-Hole Binaries
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For an inspiraling neutron-star–black-hole (NS-BH) binary, we estimate the gravity-wave frequency
ftd at the onset of NS tidal disruption. We model the NS as a tidally distorted, homogeneous, Newtonian
ellipsoid on a circular, equatorial geodesic around a Kerr BH. We find that ftd depends strongly on the
NS radius R, and estimate that LIGO-II (ca. 2006–2008) might measure R to 15% precision at 140 Mpc
(�1 event�yr under current estimates). This suggests that LIGO-II might extract valuable information
about the NS equation of state from tidal-disruption waves.
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The equation of state of the bulk nuclear matter inside a
neutron star (NS) is poorly understood [1]. For example,
candidate equations of state that are compatible with
nuclear physics experiments and theory predict, for a
1.4MØ NS, a radius anywhere from about 8 to 16 km [2].
Thorne has conjectured that insights into the equation
of state might come from measurements of the gravita-
tional waveforms emitted by merging NS-NS binaries
and/or tidally disrupting NS’s in neutron-star–black-hole
(NS-BH) binaries [3,4]. More recently, Newtonian models
of NS-NS mergers have given strong evidence that the
merger waves do carry equation-of-state information, but
for NS-NS are emitted at frequencies (�1400 2800 Hz)
too high for measurement by LIGO-type gravity-wave
interferometers [5,6]. In this paper, we show that the
prospects for NS-BH measurements are much brighter.

Central to these prospects is the question of whether NS
tidal-disruption waves lie in the band of good interferome-
ter sensitivity (for LIGO-II, �30 1000 Hz [7]; see Fig. 1).
Numerical modeling of NS tidal disruption in NS-BH bi-
naries is only now getting underway [8] and has not yet
included computations of the emitted gravity waves or
even their frequency bands. As a result, the best frame-
works now available for estimating the tidal-disruption
gravity-wave band are highly simplified, quasi-analytic
models by Shibata [10] and by Wiggins and Lai [9], which
represent the inspiraling NS as an irrotational [11], incom-
pressible or polytropic Newtonian ellipsoid, moving on a
circular, equatorial geodesic orbit around a Kerr BH, and
being tidally distorted by the Kerr Riemann tensor. For
simplicity, we focus on Shibata’s homogeneous models,
and then appeal to the polytropic models for evidence that
compressibility has only small effects.

In Shibata’s analysis, the NS gravitational field, its cen-
trifugal potential, and the Newtonian tidal potential con-
structed from the Kerr Riemann tensor are all quadratic
functions of position. As a result, a class of equilibrium
solutions are the classic irrotational, homogeneous Roche-
Riemann ellipsoids [12]. Given a choice of the binary pa-
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rameters M, a, and r (the BH mass and angular momentum
per unit mass, and the orbital separation, i.e., the Boyer-
Lindquist radius of the geodesic), there is a one-parameter
family of such NS models with density r ranging down-
ward through the family to a minimum rcr �M, a, r�.

We model the inspiraling NS as one of Shibata’s irrota-
tional ellipsoids, identified by its mass m, and its density r

or mean radius R � �3m�4pr�1�3. In our simple frame-
work, the uncertainty in m�R� embodies the uncertainty
about the NS equation of state. We describe the inspiral
as a sequence of circular, equatorial Kerr geodesics that
shrink inward until the NS reaches the innermost stable
circular orbit, r � risco, or begins to tidally disrupt [which
happens at the radius rtd where the star’s density r matches
the critical density rcr �M, a, rtd�].

The Kerr geometry provides a one-to-one correspon-
dence between the orbital radius rtd and the gravity-wave
frequency ftd at which tidal disruption begins:

ftd�M, a, rtd� �
1

p�a 1
p

r3
td�M �

(1)

FIG. 1. Plot of (square root of) noise spectral density for dif-
ferent LIGO configurations: (1) LIGO-I; (2) LIGO-II wide
band; (3),(4) LIGO-II narrow band centered on 500 and 850 Hz.
Curves (1)–(3) are from [7]; curve (4) was produced by K. A.
Strain using the same detector specifications as in [7].
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(here and below we set G � c � 1). It is this ftd that
LIGO-II can measure. Having measured ftd and deter-
mined the masses M and m from the observed inspiral
waveforms [13], one can compute rtd and then the NS
density r � rcr�M, a, rtd� and the mean NS radius R.
Thereby, the LIGO-II observations can determine a point
on the NS mass-radius curve m�R�, which represents the
NS equation of state in our simplified analysis. Even one
such point could give valuable information about the real
NS equation of state, and several such points could deter-
mine it remarkably well [14].

To estimate the accuracy with which LIGO-II might de-
termine the NS radius R, we need the explicit relation-
ship between R and the disruption-onset frequency ftd.
More precisely, we need R�m, M, a, ftd�, which can be
derived as follows: (i) rtd�M, a, ftd� is obtained by in-
verting Eq. (1); (ii) rcr �M, a, rtd� is obtained by solving
Eq. (3.9) of [10] for the ratios of semiaxes of the equi-
librium configurations, and then extremizing Eq. (3.10) of
[10], in which Ṽ2 � M��prr3�; (iii) then R is obtained
as R � �3m�4prcr�M, a, rtd��1�3. The result has the form

R�m, M, a, ftd� � m1�3M2�3D̂

∑
a
M

, ftdM

∏
, (2)

where D̂ is a dimensionless function with remarkably weak
dependence on a�M [15]. This R�ftd� is shown in Fig. 2
for various M, for a�M � 0.998 (the curves for other
a�M are almost identical to these), and for m � 1.4MØ

[16]. The radii shown, R � 8 16 km for m � 1.4MØ,
correspond to the range of predictions by plausible NS
equations of state [2]. The curves in Fig. 2 are well ap-
proximated by the formula (with G � c � 1)

FIG. 2. NS radius R vs disruption-onset frequency ftd,
for m � 1.4MØ and M � �2.5 80�MØ. The black dots,
parametrized by a�M, specify the onset of plunge into the BH;
tidal disruption is measurable only for ftd left of the plunge
point, i.e., for R above it. Negative a�M indicates retrograde
NS orbits.
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m1�3M2�3 �

Ω
0.145�ftdM�20.71 for ftdM & 0.045
0.069�ftdM�20.95 for ftdM * 0.045 .

(3)

Although the BH spin parameter a has negligible influ-
ence on the function R�ftd�, it strongly influences the ra-
dius risco of the innermost stable circular orbit [17]. If the
NS is still intact when it reaches risco, it then will plunge
rapidly into the BH and the tidal-disruption waves, if any,
will likely be so weak and short-lived as to be useless for
measuring NS properties. Thus, there is not much hope of
measuring tidal disruption unless ftd , fplunge � [Eq. (1)
with rtd replaced by risco�M, a�]; i.e., unless ftd is left of
the relevant big dot in Fig. 2.

Figure 2 and the above discussion show that (i) for a
wide range of realistic parameters, tidal disruption oc-
curs before the plunge begins, and (ii) for all realistic
parameters except a very narrow range (M & 10MØ and
R & 10 km), the tidal-disruption waves fall in the range of
good LIGO sensitivity, f & 1000 Hz. The Lai-Wiggins
polytropic NS models [9] give similar curves and con-
clusions: for polytropic indices n � 0.5 and 1.0, which
approximate NS equations of state, the R�ftd� curves are
displaced upward in frequency from those of Fig. 2 by a
mere �50 and �100 Hz.

Turn now to an estimate of the accuracy to which
LIGO-II could measure ftd (and then R) using Wiener
optimal filtering [18,19]. The measured gravity-wave
data stream g�t� is compared to a set of theoretical
inspiral templates h�ui; t�, indexed by the parameters ui

of the binary; a “best fit” ûi is found which maximizes
the likelihood of observing g�t� given a “true” signal
h�ûi; t�, and given a statistical model of the detector noise
[a Gaussian [20] random process with zero mean and
spectral density Sn�f�]. For strong enough signals, ûi

will have a Gaussian distribution centered around its “true
value” ũi , with covariance matrix [19]

Cij � �G21�ij , Gij � 2

ø
≠h
≠ui

�ûk�
Ç

≠h
≠uj

�ûk�
¿

,

(4)

where the “inner product” �· · ·	 is defined for any two real
data streams g�t�, h�t� in terms of their Fourier transforms
g̃�f�, h̃�f� by

�g, h	 �
Z `

2`
df

g̃�f�h̃��f�
Sn�jfj�

. (5)

Because so little is known about the tidal disruption
and our NS models are so crude, we use the simplest
of templates in our analysis: slow-motion, quadrupolar
waveforms for point particles in circular, Keplerian
orbits with quadrupole-governed inspiral. The Fourier-
transformed waveform, squared and averaged over binary
directions and orientations, is given by [21]
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1
�pMTf�7�3 u�fplunge 2 f� , (6)

where m and MT are the reduced and total masses, d is
the distance to the binary, and the step function shuts the
signal off at the onset of plunge.

For typical observations, optimal filtering of the inspiral
signal should give good estimates of M and m [13]. We
therefore assume that the accuracy in measuring R is lim-
ited only by the uncertainty of ftd [22]. The estimation of
ftd depends heavily on the details of the tidal-disruption
waveforms, which are largely unknown. However, it is
reasonable to expect tidal disruption to be a sudden event
that significantly weakens gravity-wave emission within a
few dynamical time scales after ftd has been reached [23].
Correspondingly, we employ a toy model where the inspi-
ral waveform of Eq. (6) dies out over a frequency band
�ftd, ftd 1 df�:

h̃td�f� �

8><
>:

h̃b�f� if f , ftd

h̃b�f�Q� f2ftd

df � if ftd , f , ftd 1 df
0 if f . ftd 1 df ,

(7)

where Q�x� � 1 2 x (linear decay), or Q�x� � 102x

(exponential decay). The standard deviation of the best fit
f̂td is given by Eq. (4) as Df̃td � �Gftdftd �h̃td��21�2.

We have evaluated Df̂td numerically, using the signal
model from Eqs. (6) and (7) and the inner product (5) with
the LIGO-II noise curves Sn�f� of Fig. 1. We have then
computed the 2s range of the NS radii R from the re-
lation R6 � R�m, M, a, f̂td 7 2Df̂td� [Eq. (2)]. The un-
certainty in R, defined as DR � �R1 2 R2��2, scales
roughly linearly with d [because Df̂td is proportional to
d through Eqs. (4) and (6)], and is quite sensitive to the
choice of the shutoff model [it scales roughly as �df�1�2

and is lower for the exponential decay than for the linear
one]. In Table I we report the fractional uncertainty DR�R,
averaged over the range 10 , R , 15 km, for choices of
parameters motivated by the following.

The NS mass m was set to be 1.4MØ [16]. The dis-
tance d and the BH masses M were chosen to repre-
sent two different scenarios: (i) low-mass BH’s, with
M � 2.5MØ at 65 Mpc (approximately one merger�yr ac-
cording to Bethe and Brown [24]); (ii) higher mass BH’s,
with M � 10MØ, 20MØ, and 40MØ, at 140 Mpc (massive
main-sequence binaries are thought to produce NS-BH bi-
naries with M � 10MØ and coalescence rates up to ap-
proximately one event�yr out to 140 Mpc, but possibly
much less [25]; capture NS-BH binaries formed in globu-
lar clusters might have M as large as hundreds of MØ

[26], but with exceedingly uncertain rates). Finally, we
considered three different gravity-wave shutoff models:
(i) an optimal-precision model with linear decay and df �
ftd�6 (the lower limit set by the uncertainty principle on
the frequency spread of waves emitted during three or-
bital periods, supposedly a typical time scale for complete
disruption [23]); (ii) a fiducial model with exponential de-
cay and df � ftd�2 (a scaling supported by numerical
calculations of tidal-disruption waveforms in NS-NS bina-
ries [5]); this model was also used to evaluate errors for
n � 1 polytropes; (iii) a conservative model with linear
decay and df � ftd�2.

The estimates for our fiducial decay model suggest that
R may be determined with a precision of �15% using the
850 Hz narrow-band LIGO-II configuration [curve (4) of
Fig. 1], and with a somewhat worse precision for wide-
band LIGO-II [curve (2)]. If the optimal-precision decay
model is correct, the error might be as low as �6 10%.
The usefulness of the 500 Hz narrow-band interferome-
ter [curve (3) of Fig. 1] is limited to the heavier BH’s or
to the larger NS’s, which have lower ftd. Our estimates
are inferior for the Lai-Wiggins compressible polytropes
[9] examined in the least favorable case (n � 1), and for
the most conservative decay model; even then, an 850 Hz
narrow-band LIGO-II might be able to provide significant
information about R.

The accuracy of our analysis is limited by several fac-
tors. Sources of error in the frequency ftd�m, M, a, R� at
which tidal disruption begins to significantly change the
inspiral waveforms include: (i) the use of the test-mass
approximation for the NS orbit, when actually m ø� M,
especially for the low-mass Bethe-Brown case; (ii) the use
TABLE I. Fractional uncertainty DR�R, averaged over the range 10 km , R , 15 km. Rows: BH masses; columns: gravity-wave
decay models and detector noise curves [labeled by (2)– (4) as in Fig. 1]. No quote is given if DR�R . 25%.

DR�R �%� for 10 km , R , 15 km

lin. decay exp. decay e.d., n � 1 lin. decay
df � ftd�6 df � ftd�2 df � ftd�2 df � ftd�2

MnSn (2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (4)

2.5MØ
a 12 18c 8 20 · · · 13 24c · · · 25 21c · · · 17

10MØ
b 14 17c 10 23 · · · 17 25c · · · 21 25c · · · 19

20MØ
b 10 16 10 16 14c 16 23 · · · 14 22 25c 16

40MØ
b 7 6 11 11 10 19 20 10c 20 17 19 23

aAt 650 Mpc.
bAt 140 Mpc.
cFor 12 km , R , 15 km.
3521



VOLUME 84, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 17 APRIL 2000
of the Riemann tensor to compute tidal forces when the NS
diameter is not, typically, small compared to the distance
from the NS center to the horizon [27]; (iii) the idealiza-
tion of the NS as a homogeneous or polytropic ellipsoid;
(iv) the fact that the point at which the observed waveforms
show a clear deviation from a standard inspiral may actu-
ally come a few orbits earlier (due to tidal coupling) or
later than ftd.

Our method presupposes a reliable technique to dis-
tinguish a plunge shutoff of the inspiral waves from a
tidal-disruption shutoff. In fact, it seems likely that the
tidal-disruption waveform will actually contain features
that not only distinguish it from a plunge shutoff, but that
also carry equation-of-state information which is richer
than in our crude model. For example, simulations [5] of
tidal disruption in NS-NS binaries show a spectrum with
an inspiral cutoff followed by a valley, a moderately sharp
peak, and a cliff; however, the NS-BH case is likely to be
different, and the issue will ultimately be settled only by
detailed numerical simulations.

Given these large uncertainties, our results can only be
rough indications of the prospects for learning about NS’s
from tidal-disruption waveforms. They do, however, sug-
gest that observations of tidal disruption in NS-BH bina-
ries might be possible in �2006 2008 with LIGO-II, and
might yield useful insights into the NS equation of state.
The success of this endeavor will require the development
of better theoretical and numerical techniques for model-
ing NS tidal disruption and computing the dependence of
the disruption waveforms on the NS equation of state; we
strongly advocate such an effort.
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