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Gravity Waves, Chaos, and Spinning Compact Binaries
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Spinning compact binaries are shown to be chaotic in the post-Newtonian expansion of the two-body
system. Chaos by definition is the extreme sensitivity to initial conditions and a consequent inability to
predict the outcome of the evolution. As a result, the spinning pair will have unpredictable gravitational
waveforms during coalescence. This poses a challenge to future gravity wave observatories which rely
on a match between the data and a theoretical template.

PACS numbers: 04.30.Db, 04.25.–g, 05.45.Pq, 97.80.Fk
Coalescing binaries are the primary objects of attention
for future ground based gravity wave detectors such as
LIGO and VIRGO. The successful detection of the wave-
forms requires a technique of matched filtering whereby
the data are convolved with a theoretical template. Ex-
cellent agreement is required if a signal is to be drawn
out of the noise. A possible obstacle to the method of
matched filtering can surface if the orbits become chaotic.
As shown here, the final coalescence of spinning, compact
binaries proceeds chaotically for some spin configurations.
Chaotic binaries with similar initial conditions may pro-
duce disparate waveforms, and consequently they may not
be detectable by the method of matched filtering. An al-
ternative method must be sought for their detection.

Many authors have emphasized that black holes are
susceptible to chaos [1–6]. Chaos has not received the at-
tention it deserves in part because the systems studied have
been highly idealized. An elegant example of chaos around
black holes is provided by the Majumdar-Papapetrou
spacetimes [7,8] which arrange extremal black holes such
that the gravitational attraction of their masses is exactly
countered by the electrostatic repulsion of their charges.
The spacetime is static and yields a simple solution. The
geodesics, however, are formally nonintegrable and fully
chaotic [1,4]. A static spacetime produces no gravitational
waves and so the chaotic scattering in the Majumdar-
Papapetrou spacetime remains just an interesting formal
system, although gravity waves are produced by a third
orbiting body [5]. Chaos around Schwarzschild black
holes has also been studied formally with a hypothetical
perturbation of a test companion along the homoclinic or-
bits which mark the boundary between dynamical stability
and instability [2]. Another important example of chaos
around a black hole is the motion of a spinning test par-
ticle [3]. This already shows the key features of the two-
body system investigated here.

In this paper, the most realistic description currently
available of a black hole plus a companion is shown to suc-
cumb to chaos when the pairs spin. The post-Newtonian
(PN) expansion of the relativistic two-body problem
[9–12] provides the dynamical equations of motion to sec-
0031-9007�00�84(16)�3515(4)$15.00
ond post-Newtonian (2PN) order [13,14]. In the absence
of spins, the existence of a conserved angular momentum
and energy [10] ensure that the system is in principle
integrable to at least 5�2PN-order [15]. The nonspinning
pair still has two identifiable circular orbits for a given
angular momentum, one stable and one unstable. In the
transition to chaos, the periodic orbits proliferate and
these form the structure of the chaotic dynamics. The
homoclinic orbits found in Ref. [15] demarcate the region
of phase space at which this occurs, perhaps at higher
orders in the PN expansion.

When spins are introduced at 2PN-order, the orbital
plane precesses chaotically. There are now an infinite num-
ber of periodic orbits which form a fractal in the dynami-
cal phase space. We can isolate this fractal through the
method of fractal basin boundaries [4–6,16–18]. Fractals
are a particularly important tool in relativity since they do
not depend on the coordinate system used, a point empha-
sized in [18].

In the notation of Ref. [13], the center of mass equations
of motion in harmonic coordinates are

�̈x � �aPN 1 �aSO 1 �aSS 1 �aRR . (1)

The right hand side is the sum of the contributions to
the relative acceleration from the PN expansion, from the
spin-orbit (SO) and spin-spin (SS) coupling, and from the
radiative reaction (RR). The spins also precess by

��S1 � �V1 3 �S1,
��S2 � �V2 3 �S2 . (2)

For brevity we do not rewrite the explicit forms of �a and
�V here, but they can be found in Ref. [13]. There are

12 degrees of freedom � �x, ��x, �S1, �S2�. The form of Eq. (2)
indicates that the magnitudes of the individual spins are
conserved. To 2PN-order there is also a conserved en-
ergy E and a conserved total angular momentum �J �
�L 1 �S where �L is the orbital angular momentum and
�S � �S1 1 �S2. In all, there are 6 constants of motion re-
ducing the phase space to 6 degrees of freedom, plenty to
allow for chaotic motion. The condition that the orbit be
perfectly circular �r � r̈ � 0 (where r � j �xj) still leads to
an underdetermined set of equations for which there are an
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infinite number of spin configurations. This is evidence for
the proliferation of periodic orbits and indicates the pursuit
of an innermost stable circular orbit [19] is futile.

Figure 1 shows typical orbital motion in the absence of
spins and with the dissipative (RR) term in Eq. (1) tem-
porarily turned off. There is no precession of the orbital
plane and no chaos. Although the orbit is confined to
a plane, the perihelion precesses within the plane due to
the relativistic corrections. The regularity of the motion
is confirmed by the phase space diagram in Fig. 1 which
shows the motion to be confined to a smooth line in the
�r , �r� plane. The waveforms for specific orbits are ob-
tained to 3�2PN-order using the results of Ref. [13] and
neglecting tail contributions. For simplicity we show the
1-polarization waveform, h1 � hxx , with the Earth lo-
cated above the z axis.

If the compact objects spin, then the motion can become
chaotic. The spin vector �S1 is tilted by an angle u1 mea-
sured from the ẑ axis and the spin vector �S2 is tilted by an
angle u2. The motion is clearly occupying three dimen-
sions and is no longer confined to a plane as demonstrated
in Fig. 2. A Poincaré surface of section is constructed by
plotting a point as the orbit crosses the z � 0 plane from
z . 0 to z , 0. A regular orbit would draw a smooth
curve in the plane while a chaotic orbit speckles the plane
with points unpredictably. The chaotic precession is indi-
cated in the surface of section which has begun to turn to
dust. The more titled the spin vectors, the thicker the dusty

FIG. 1. The pair has mass ratio m2�m1 � 1.4�10 and no spins.
The initial conditions are xi�m � 10, �yi � 0.3, and zi � 0.
Time is measured in units of the total mass m. Top: A 3D
view of the orbit. Lower left: The smooth phase space curve
in the �r, �r� plane. Lower right: The waveform h1.
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region in the surface of section. [Since the phase space
has a large number of dimensions, the diagram is a projec-
tion onto the �r , �r� plane. Cautious of any ambiguity this
may introduce, we take the speckled surface only as con-
firmation of chaos seen in the precessional motion and the
fractal basin boundaries discussed below.] The waveform
is also shown.

The binary of Fig. 2 could be a maximally spinning
10MØ black hole with a rapidly rotating 1.4MØ neutron star
companion. The spins are each displaced from the initial
orbital angular momentum by 45±. Large spin misalign-
ments occur naturally in the formation of close black hole/
neutron star pairs [20]. The orbit shown is within the LIGO
bandwidth with a frequency of roughly O �10 102� Hz.
With dissipation included, an orbit which begins regular
at larger radii chaotically scatters as the pair draws closer
and the signal sweeps through the LIGO bandwidth.

Chaos is not isolated to this specific binary. Instead
of investigating individual orbits, we can broadly scan the
phase space for chaos. There may be a sensitivity to the
variation of any of the degrees of freedom as well as
the relative masses of the compact objects. Since it is im-
possible to cover all variations, in this instance we limit
our scan to search for chaos as the spin angles are var-
ied. To do this, we look at a slice through the phase space
which varies only the initial angle u1 of �S1 and the ini-
tial angle u2 of �S2 for pairs which are otherwise given
identical initial conditions (in this case m2�m1 � 1�3 and

FIG. 2. The pair has mass ratio m2�m1 � 1.4�10 and spins
S1 � m2

1, S2 � 0.7m2
2 . The initial conditions are xi�m � 10,

�yi � 0.3, and zi � 0. The initial angles are u1 � u2 � 45±.
Top: A 3D view of the orbit. Lower left: The surface of section
in the �r, �r� plane. Lower right: The waveform h1.
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S1�m2
1 � S2�m2

2 � 0.6). These could be black hole pairs.
While the spins are consistent with neutron star pairs also,
they are at such a close separation that tidal effects for the
extended objects would be significant. The initial loca-
tion in the �u1, u2� plane is color coded black if the pairs
coalesce, grey if the pairs separate by r�m . 1000, and
white if stable motion is attained with more than 50 or-
bits. A few pairs which separate to r�m . 1000 may still
continue orbiting. Increasing the cutoff would reduce the
grey basin. Also, pushing the stable orbit condition to more
than 100 orbits tends to increase the size of the black basins
slightly as more orbits have a chance to coalesce. If there
were no chaos, the boundaries between colors would be
smooth while fractal boundaries signal chaos. The frac-
tal basin boundaries of Fig. 3 clearly show a mingling of
possible outcomes as the angles are varied. The extreme
sensitivity to initial conditions is exemplified in the blown

FIG. 3. Top: The fractal basin boundaries for pairs with
m2�m1 � 1�3 and S1�m2

1 � S2�m2
2 � 0.6. All orbits begin

with xi�m � 5, �yi � 0.45. The initial angles �u1, u2� are var-
ied. The axes are labeled in radians. There are 200 3 200 orbits
shown. The middle and bottom panels are details of the upper
panel.
up regions in the lower panels of Fig. 3 which show the
repeated fractal structure.

Compact pairs with initial conditions drawn from near
the fractal basin boundaries will result in unpredictable
outcomes. They will have correspondingly unpredictable
waveforms. The waveforms for pairs selected from the
initial conditions in Fig. 3 are shown in Fig. 4. The orbits
begin with nearly identical initial conditions. Although the
difference in initial angles is only 3±, the waveforms are
entirely different. The first pair separates while the second
pair executes many thousands of orbits.

It should be emphasized that orbits within smooth basins
can still be chaotic. Well within the white stable basins,
many orbits will precess chaotically as does the orbit of
Fig. 2. Similarly, many of the escape orbits and the merger
orbits will chaotically scatter before reaching their final
outcome. Fractal basin boundaries are a fairly blunt tool,
insensitive to some manifestations of chaos. Therefore
while fractal basin boundaries do prove the dynamics is
chaotic, smooth basins are inconclusive.

With the radiative reaction included, the pair goes from
an energy conserving scattering system to a dissipative one.
In any stability analysis, dissipation must be turned off to
distinguish instability to the onset of chaos from instabil-
ity to merger from simple energy loss. Once the chaos has
been identified, radiative back reaction can readily be in-
corporated and we do so now. Under the effects of dissipa-
tion, some orbits will sweep through the chaotic region of
phase space as they inspiral. The surface of section is not
useful for a dissipative system since the radius of the orbit
is shrinking as energy is lost to gravity waves. However,
fractal basin boundaries are still effective at identifying ex-
treme sensitivity to initial conditions. Another advantage
is that several thousand orbits can be scanned at once. We
use this method to show that dissipation does not obliterate
the chaos.

As energy is lost the binary pairs tend to coalesce in such
a way that r ! merger is an attractor in phase space that
can be described by another fractal set. To show this, we

FIG. 4. The waveform h1 for pairs selected from the initial
conditions in Fig. 3. Both orbits begin with u1 � 10±. The left
panel began with u2 � 128± while the right panel began with
u2 � 131±. The extreme angles were randomly chosen from the
fractal set for illustration. Chaos is seen with more temperate
angles as in Fig. 2.
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FIG. 5. The fractal basin boundaries with dissipation included.
The parameters are m2�m1 � 1.4�10 and spins S1 � m2

1 and
S2 � 0.7m2

2 . The orbits begin with xi�m � 26, �yi � 0.15, and
zi � 0. The pair can execute anywhere from 0 to O �40� orbits
before coalescence. The initial angles �u1, u2� are varied from
2p to p. There are 300 3 300 orbits shown.

again look at an initial condition slice through phase space.
We evolve each of these pairs under the influence of the
radiative reaction force. We need to color code the ini-
tial conditions on the basis of some well defined outcome.
Since all pairs considered coalesce, we have to select some
other criterion than that used above. We choose to color
code the initial location in the �u1, u2� plane white if the
pairs approach merger from below the z axis and black if
they approach merger from above the z axis. The resultant
fractal is shown in Fig. 5. Another criterion could have
been selected and in this sense the basin boundaries are
crude, as already mentioned, but they are nonetheless pow-
erful at signaling the presence of chaos. The conclusion to
draw from this figure is that there is extreme sensitivity to
initial spin angles for rapidly spinning, inspiralling 10MØ

black hole and 1.4MØ neutron star binaries. The pairs will
inspiral along different paths as a result of this sensitiv-
ity and therefore will have disparate waveforms. Similar
chaotic sets have also been found for different binary mass
ratios and orbital parameters.

This work demonstrates the existence of chaotic regions
of phase space. At least some orbits will move into this
chaotic region as they inspiral. Of course, some orbits will
still be regular such as circular inspiral with spins exactly
aligned with the orbital angular momentum. A systematic
scan of all parameters is needed to ascertain when the dy-
namics is predictable and regular and when it is chaotic. A
quantitative comparison of the waveforms from a chaotic
orbit against a circular template is also needed to evaluate
how seriously chaos would deter detection. Given that ec-
centricity in an otherwise simple orbit can greatly diminish
the signal when matched against a circular template [21],
the chaotic precession does not bode well. Still, the lu-
minosity in gravity waves is enhanced for some of these
wilder orbits [5], as was already seen along the regular ho-
3518
moclinic orbits [15]. Though unlikely, an optimist might
hope that direct detection of these gravity waves will be
possible if the signal is boosted substantially above the
noise, relieving the dependence on a theoretical template.

The inherent difficulty in the direct detection of gravity
waves highlights the importance of indirect methods of de-
tection. Corroborating evidence for gravity waves in elec-
tromagnetic observations may be promising. Chaos can
have unexpected benefits if the black hole is able to cap-
ture the light from a luminous companion for many chaotic
orbits before some of the light escapes. Such chaotic scat-
tering of a pulsar beam around a central black hole could
lead to a diffuse glow around the pair [6]. While this sig-
nature is likely to be faint, any confirmation of a gravity
wave signal will be welcome.

I am grateful to E. J. Copeland, R. O’Reilly, and N. J.
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