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Classification of Phase Transitions in Small Systems
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We present a classification scheme for phase transitions in finite systems like atomic and molecular
clusters based on the Lee-Yang zeros in the complex temperature plane. In the limit of infinite particle
numbers the scheme reduces to the Ehrenfest definition of phase transitions and gives the right critical
indices. We apply this classification scheme to Bose-Einstein condensates in a harmonic trap as an
example of a higher order phase transition in a finite system and to small Ar clusters.

PACS numbers: 05.70.Fh, 64.60.Cn, 64.70.–p
Small systems do not exhibit phase transitions. Follow-
ing Ehrenfest’s definition this statement is true for almost
all small systems. Instead of exhibiting a sharp peak or
a discontinuity in the specific heat at some well-defined
critical temperature the specific heat shows a more or
less smooth hump extending over some finite temperature
range. For example, for the melting of atomic clusters
this is commonly interpreted as a temperature region where
solid and liquid clusters coexist [1,2] and as a finite-system
analog of a first order phase transition. Proykova and Berry
[3] interpret a structural transition in TeF6 clusters as a sec-
ond order phase transition. A common way to investigate
if a transition in a finite system is a precursor of a phase
transition in the corresponding infinite system is to study
the particle number dependence of the appropriate ther-
modynamic potential [4]. However, this approach will fail
for all system types where the nature of the phase transi-
tion changes with increasing particle number which seems
to be the case, e.g., for sodium clusters [5] or ferrofluid
clusters [6]. For this reason a definition of phase transi-
tions for systems with a fixed and finite particle number
seems to be desirable. The only recommended feature is
that this definition should reduce to the Ehrenfest definition
when applied to infinite systems for systems where such
limits exist. An approach in this direction has been made
by studying the topological structure of the n-body phase
space and a hypothetical definition based on the inspection
of the shape of the caloric curve [7]. A mathematical more
rigid investigation giving the sufficient and necessary con-
ditions for the existence of van der Waals–type loops has
been given by Wales and Doye [8].

Our ansatz presented in this Letter is based on earlier
works of Lee and Yang [9] and Grossmann et al. [10] who
gave a description of phase transitions by analyzing the dis-
tributions of zeros (DOZ’s) of the grand canonical J�b�
and the canonical partition function Z�b� in the complex
temperature plane. For macroscopic systems this analy-
sis merely contributes a sophisticated view of the ther-
modynamic behavior of the investigated system. We will
show that for small systems the DOZ’s are able to reveal
the thermodynamic secrets of small systems in a distinct
manner. In the following we restrict our discussion to the
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canonical ensemble and denote complex temperatures by
B � b 1 it where b is as usual 1�kBT [11].

In the case of finite systems one must not deal with
special considerations regarding the thermodynamic limit.
We write the canonical partition function Z�B� �

R
dE 3

V�E� exp�2BE�, with the density of states V�E�, as
a product Z�B� � Zl�B�Zi�B � where Zl�B� describes
the limiting behavior of Z�B � for T ! ` imposing
limB!0Zi�B� � 1. In general, Zl�B� will not depend on
the interaction between the particles or the particle statis-
tics but it will depend on the external potential imposed.
For example, for N particles in a d-dimensional harmonic
trap we have Zl�B� � B2dN and for a d-dimensional
gas Zl�B � � B2dN�2. In the following we will assume
that Zl�B � has no zeros except at B � `. Then the zeros
of Z�B� are the same as those of Zi�B �. Applying the
product theorem of Weierstrass [12] the canonical parti-
tion function can be written as a function of the zeros of
Zi�B� in the complex temperature plane. Because Z�B �
is an integral function its zeros Bk � B

�
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The free energy F�B� � 2
1
B ln�Z�B �� is analytic, i.e., it

has a derivative at every point, everywhere in the com-
plex temperature plane except at the zeros of Z�B �. If the
zeros are dense on lines in the complex plane, different
phases are represented by different regions of holomorphy
of F�B � and are separated by these lines in the complex
temperature plane. The DOZ contains the complete ther-
modynamic information about the system and all desired
thermodynamic functions are derivable from it. The cal-
culation of the specific heat CV �B � by standard differen-
tiation yields

CV �B� � Cl�B� 2
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Zeros of Z�B� are poles of F�B� and CV �B �. As can be
seen from Eq. (2) the major contributions to the specific
heat come from zeros close to the real axis, and a zero ap-
proaching the real axis infinitely close causes a divergence
in the specific heat.

In the following we will give a discretized version of the
classification scheme of Grossmann et al. [10]. To char-
acterize the DOZ close to the real axis let us assume that
the zeros lie approximately on a straight line. The cross-
ing angle of this line with the imaginary axis (see Fig. 1)
is then n � tang with g � �b2 2 b1���t2 2 t1�. The
crossing point of this line with the real axis is given by
bcut � b1 2 gt1. We define the discrete line density f

as a function of tk as the average of the inverse distances
between Bk and its neighboring zeros

f�tk� �
1
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µ
1

jBk 2 Bk21j
1

1
jBk11 2 Bkj

∂
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with k � 2, 3, 4, . . . . Guidelined by the fact that the im-
portance of the contribution of a zero to the specific heat
decreases with increasing t we approximate f�t� in the
region of small t by a simple power law f�t� � ta . A
rough estimate of a considering only the first two zeros
yields

a �
lnf�t3� 2 lnf�t2�

lnt3 2 lnt2
. (4)

Together with t1, the imaginary part of the zero closest to
the real axis, the parameters g and a classify the DOZ.
As will be shown below, the parameter t1 is the essential
parameter to classify phase transitions in small systems.
For a true phase transition in the Ehrenfest sense we have
t1 ! 0. For this case it has been shown [10] that a phase
transition is completely classified by a and g. In the
case a � 0 and g � 0 the specific heat CV �b� exhibits
a d peak corresponding to a phase transition of first order.
For 0 , a , 1 and g � 0 (or g fi 0) the transition is of
second order. A higher order transition occurs for 1 , a

and arbitrary g. This implies that the classification of
phase transitions in finite systems by g, a, and t1, which
reflects the finite size effects, is a straightforward extension
of the Ehrenfest scheme.

The imaginary parts ti of the zeros have a simple
straightforward interpretation in the quantum mechanical
case. By going from real temperatures b � 1��kBT � to
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FIG. 1. Schematic plot of the DOZ illustrating the definition
of the classification parameters given in the text.
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complex temperatures b 1 it�h̄ the quantum mechanical
partition function can be written as

Z�b 1 it�h̄� � Tr�exp�2itH�h̄� exp�2bH�� , (5)

� �Ccanj exp�2itH�h̄� jCcan	 (6)

� �Ccan�t � 0� jCcan�t � t�	 ,

introducing a canonical state, which is the sum of all
eigenstates of the system appropriately weighted by
the Boltzmann factor, jCcan	 �

P
i exp�2bei�2� jfi	.

Within this picture a zero of the partition function occurs
at times ti where the overlap of a time evoluted canonical
state and the initial state vanishes. This resembles a
correlation time, but some care is in order here. The time
ti is not connected to a single system, but to an ensemble
of infinitely many identical systems in a heat bath, with a
Boltzmann distribution of initial states. Thus, the times
ti are those times after which the whole ensemble loses
its memory.

Equation (5) is nothing but the canonical ensemble av-
erage of the time evolution operator exp�2itH�h̄�. Fol-
lowing Boltzmann the ensemble average equals the long
time average which was proven quantum mechanically
by Tasaki [13]. Therefore ti indeed resembles times for
which the long time average of the time evolution operator
vanishes.

The observation of Bose-Einstein condensation in di-
lute gases of finite number (�103 107) of alkali atoms in
harmonic traps [14] has renewed the interest in this phe-
nomenon which has already been predicted by Einstein
[15] in 1925. The number of condensed atoms in these
traps is far away from the thermodynamic limit, raising the
interesting question how the order of the phase transition
changes with an increasing number of atoms in the con-
densate. For this reason we treat the Bose-Einstein con-
densation in a three-dimensional isotropic harmonic trap
(h̄ � v � kB � m � 1) as an example for the applica-
tion of the classification scheme given above.

For noninteracting bosons the occupation numbers of an
eigenstate ji	 and N 1 1 particles can be evaluated by a
simple recursion [16]

hi�N 1 1,B� �
ZN �B�

ZN11�B�
exp�2Bei� �hi�N ,B� 1 1� .

(7)

Since the particle number is a conserved quantity in the
canonical ensemble the direct calculation of the normal-
ization factor can be omitted by using the relation

ZN �B �
ZN11�B�

�
N 1 1P`

i�0 exp�2Bei� �hi�N ,B� 1 1�
. (8)

Since ZN �B� is an exponentially decreasing function in b

it is a difficult numerical task to calculate its zeros directly.
Zeros of the partition function are reflected by poles of the
ground state occupation number

h0�N ,B� � 2
1
B

≠e0ZN �B�
ZN �B �

(9)
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FIG. 2. Contour plots of the ground state occupation number jh0j�N in the complex temperature plane for 40, 120, and 300 particles
in a three-dimensional isotropic trap. The black spots indicate the locations of zeros of the partition function.
evaluated at complex temperatures. Figure 2 displays con-
tour plots of jh0�N ,B�j�N for 40, 120, and 300 particles.
The locations of the zeros of Z�B� [poles of h0�N ,B�]
are indicated by the white spots. The separation of the
condensed (dark) and the normal (bright) phase is con-
spicuous. The zeros act like boundary posts between both
phases. The boundary line between both phases gets more
and more pronounced as the number of particles increases
and the distance between neighboring zeros decreases.
Figure 2 virtually displays how the phase transition ap-
proaches its thermodynamic limit. We have determined
the classification parameters for the phase transition by a
numerical analysis of the DOZ for up to 400 particles. The
results are given in Fig. 3. The parameter a is constant at
about 1.25. The small fluctuations are due to numerical
errors in the determination of the location of the zeros.
This value of a indicates a third order phase transition in
the three-dimensional harmonic trap. Results for the two-
dimensional systems and other trap geometries, which will
be published elsewhere in detail, indicate that the order of
the phase transition depends strongly on the trap geome-
try. The parameter g and the noninteger fraction of a are
related to the critical indices of the phase transition, e.g.,
g � 0 indicates equal critical indices for approaching the
critical temperature from the left and from the right. Re-
garding the finite size effects t1 is of major importance. As
can be seen in Fig. 3(b) t1 is approximately proportional
to 1�N so that the systems of bosons in a three-dimensional
harmonic trap approach a true higher order phase transition
linearly with increasing particle number N .

It appears that the DOZ for Bose-Einstein condensates
is rather smooth. As an example for a little more compli-
cated situation we calculated the DOZ for small Ar clus-
ters, which have been extensively studied in the past [17].
Their thermodynamic behavior is governed by a hopping
process between different isomers and melting [18]. Many
indicators of phase transitions in Ar clusters have been in-
vestigated, e.g., the specific heat [19], the rms bond length
fluctuation [20], and the onset of a 1�f-noise behavior
of the potential energy in time dependent molecular dy-
namics simulations [21]. However, for a good reason, all
these attempts lack a definite classification of the transi-
tions taking place in these clusters. Without going into
the details of our numerical method which is based on a
determination of the interaction density of states by exten-
sive Monte Carlo simulations along with an optimized data
analysis [22] we give here the results for Ar6 and Ar30.
Figure 4 displays contour plots of the absolute value of
the specific heat cV �B� in the complex temperature plane.
For Ar6 the poles lie on a straight line at T 
 15 K and
are equally spaced with resulting classification parameters
a � 0, g � 0, and t1h̄ � 0.05 ps. From earlier works
[23] it is well known that at this temperature a hopping
transition between the octahedral and the bicapped tetra-
hedral isomer occurs. Our classification scheme now indi-
cates that this isomer hopping can be identified as a first
order phase transition. Ar30 already has a tremendous
number of different isomers, and a much more complicated
form of the DOZ arises [see Fig. 4(b)]. The DOZ cuts
the complex temperature plane into three regions with two
transition lines approaching the real axis. Comparing with
the literature the region below 31 K can be identified as the

FIG. 3. Plots of the classification parameters a, g, and t1
versus the number of particles for a three-dimensional har-
monic trap.
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FIG. 4. Contour plots of the specific heat jcV j for Ar6 and Ar30 clusters.
solid phase and the region above 45 K as a fluid phase. Be-
cause our Monte Carlo simulations are performed at zero
pressure at this temperature, also the evaporation of atoms
from the cluster starts which corresponds to the onset of the
gas phase. The phase between these two transition lines is
commonly interpreted as the melting, isomer hopping, or
coexistance region. The analysis of the order of the phase
transitions is quite difficult in this case and will be inves-
tigated in a more systematic study. Nevertheless the DOZ
displays in a distinct manner the phase separation for Ar30
and can be viewed as a unique fingerprint.

In conclusion we have found that the DOZ of the canoni-
cal partition function can be used to classify phase transi-
tions in finite systems. The DOZ of a specific system acts
like a unique fingerprint. The classification scheme given
above is equivalent to that given by Grossmann et al. but
extended to the region of finite particle numbers. We have
found that the zeros of the partition function act like bound-
ary posts between different phases in the complex tempera-
ture plane. The finite size effects for the Bose-Einstein
condensation are reflected by a 1�N dependence of the
parameter t1 and only a slight change of the parameter
a which indicates the order of the phase transition. For
Ar clusters the DOZ leads to enlightening pictures of the
complex process of melting or isomer hopping, identifying
in a distinct manner two critical temperatures supporting
an old assumption of Berry et al. [17]. This classifica-
tion scheme developed for the canonical ensemble should
also hold for other ensembles, i.e., different experimental
conditions should not influence the nature of the systems
although, e.g., the shape of the caloric curve may signifi-
cantly differ.
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