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Nonlocal twist operators are introduced for the O�n� and Q-state Potts models in two dimensions
which count the numbers of self-avoiding loops (respectively, percolation clusters) surrounding a given
point. Their scaling dimensions are computed exactly. This yields many results: for example, the number
of percolation clusters which must be crossed to connect a given point to an infinitely distant boundary.
Its mean behaves as �1�3

p
3 p� j ln� pc 2 p�j as p ! pc2. As an application we compute the exact

value
p

3�2 for the conductivity at the spin Hall transition, as well as the shape dependence of the mean
conductance in an arbitrary simply connected geometry with two extended edge contacts.

PACS numbers: 05.50.+q, 64.60.Ak, 73.40.Hm
The conformal field theory/Coulomb gas approach to
two-dimensional percolation and self-avoiding walk prob-
lems has been extraordinarily fruitful [1–3]. In addition to
values for many of the critical exponents, other universal
scaling functions such as percolation crossing probabilities
have been obtained exactly [4,5]. In this Letter a set of
correlation functions of nonlocal operators is introduced,
which describe topological properties of percolation clus-
ters and self-avoiding walks, and count the number of clus-
ters or loops which must be crossed in order to connect two
or more points.

It turns out that these exponents may easily be computed
using standard Coulomb gas methods, for general n or Q in
the O�n� or Q-state Potts model, respectively. In the limits
n ! 0 or Q ! 1, corresponding to self-avoiding walks or
to percolation, respectively, the scaling dimensions of these
operators vanish, so that some of their correlations are
trivial. However, it is their derivatives with respect to n or
Q which give physical information, thereby giving rise to
a variety of logarithmic behavior. The frequent occurrence
of logarithmic correlations in such conformal field theories
(CFTs) with vanishing central charge has recently been
pointed out in several contexts [6,7].

In certain cases these topological operators may be re-
cognized as twist operators which have already been iden-
tified in c � 1 theories [8] and the three-state Potts model
0031-9007�00�84(16)�3507(4)$15.00
[9]. From the CFT point of view, they turn out to cor-
respond to degenerate Virasoro representations labeled by
�r , s� � �1, 2� in the Kac classification. These bulk op-
erators have not previously been identified for general n
and Q. The fact that they are degenerate means that their
higher-point correlations may be computed exactly.

In addition to bulk operators of the above type it is also
possible to define operators which count the number of
loops or clusters surrounding a point near the boundary of a
system. They may be used to compute the universal mean
conductance at the spin quantum Hall transition, which
has recently been shown to map onto the percolation pro-
blem [10].

O�n� model.—Let us recall the elements of the
Coulomb gas approach [1]. n-component spins s�r�
with s2�r� � 1 are placed at the sites r of a lattice, with
a nearest neighbor interaction. The partition function
Tr

Q
rr 0�1 1 ys�r� ? s�r 0��, when expanded in powers of

y, gives a sum over self-avoiding loops with a factor y for
each bond and n for each loop. Each loop may be replaced
by a sum over its orientations, with a weight e6ipx for
each, with x chosen so that the sum gives n � 2 cospx .
This gas of oriented loops is then mapped onto a height
model with variables f�R� [ pZ on the dual lattice,
such that on the dual bond RR0 f�R� 2 f�R0� � 0, 61
according to whether the bond it crosses is empty or is
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occupied by a loop segment of one orientation or the other.
At the critical fugacity yc this is supposed to renormalize
onto a free field with reduced free energy functional
� g��4p��

R
�≠f�2d2r , with respect to which the long-

distance behavior of all correlations may be computed
as long as phase factors associated with noncontractible
loops are correctly accounted for. g may be fixed by a
variety of methods: for the dilute regime of interest here,
g � 1 1 x . On an infinitely long cylinder of perimeter
L, in order to correctly count loops which wrap around
the cylinder with weight n it is necessary to insert factors
e6ix�f�6`� at either end: these modify the free energy
per unit length to 2�p�6L� �1 2 �6�g�x2�, from which
the value of the central charge c � 1 2 6� g 2 1�2�g
follows. For self-avoiding walks, n � 0, x � 1

2 , and g �
3
2 , so that c � 0.

Now suppose that loops which wrap around the cylin-
der are counted with a different weight n0 � 2 cospx 0.
(A similar construction was used in Ref. [11] to count the
winding angle of open walks.) The cylinder free energy
per unit length will be modified by a term �p�g� �x 02 2

x2�. In the plane, this may be interpreted as the in-
sertion of a nonlocal operator sn0 whose scaling dimen-
sion is

x�n; n0� � �1�2g�n�� �x 02 2 x2� , (1)

so that the two-point function �sn0�r1�sn0�r2�� decays like
jr1 2 r2j

22x�n;n0� at criticality. The interpretation of this is
as a defect line joining r1 and r2: loops which cross this
defect line an odd number of times, that is, which surround
either but not both of the points [12], now carry a factor
n0 instead of n. A particular example is n0 � 2n, which
is equivalent to making the identification s�r� ! 2s�r� as
the defect line is crossed. Such twist operators have been
identified in other models [8,9]: like disorder operators,
they reflect the existence of nontrivial homotopy. From (1)
it follows that the dimension of this operator is x�n; 2n� �
�3�2g� 2 1, which is x1,2 in the Kac classification xr ,s �
��rg 2 s�2 2 �g 2 1�2��2g. However, for small n and
n0, x�n, n0� � �1�6p� �n 2 n0�, so that, to first order, it
does not matter whether x�n, 2n� or x�0; n0� is used apart
from factors of 2. Note that if n0 � 2n the fusion rules of
CFT imply the operator product expansion (OPE) s ? s �
1 1 e 1 . . . , where e is the �1, 3� operator which has been
identified as the local energy density of the O�n� model
[2]. e�r� counts whether a given bond r is occupied or
not—consistent with the interpretation that, as a ! 0, the
O�n� term in s�r 1 a�s�r 2 a� counts whether the single
loop is trapped between the points r 6 a.

Here are a few examples of the application of this for-
mula. Away from criticality it implies that �sn0�R�� �
C�n; n0�j2x�n,n0�, where the correlation length j behaves
as � yc 2 y�2n , and C�0; 0� � 1. When n � 0, the co-
efficient of n0M counts configurations of M nested loops
surrounding the point R of the dual lattice. Denoting the
3508
number of such loops of total length N by b
�M�
N , the most

singular term in the generating function
P

N b
�M�
N yN �

�1�M!� ��1�8p� j ln� yc 2 y�j�M as y ! yc2, using n �
3
4 . This yields the asymptotic behavior

b
�M�
N � �s0��M 2 1�!� �1�8p�M�1�N� �lnN�M21mN ,

where m � y21
c is the usual lattice-dependent connective

constant, and s0 is a positive integer taking account of the
fact that, on a loose-packed lattice, there are s0 equiva-
lent singularities on the circle j yj � yc. For M � 1, one
may sum over the position of the marked point R, in-
stead of summing over the position of the loop, so that
b

�1�
N � ANpN , where pN is the number of single loops per

lattice site and AN is their average area. The amplitude
1�8p in this case agrees with an earlier result found by
a different (more involved) method [13]. It is interesting
also to calculate higher point functions. For example the
O�n� term in the connected four-point function �ssss�c

counts the number of single loops which have nontrivial
winding around all four points. Examples are shown in
Fig. 1. Since s is a (1,2) operator this four-point func-
tion may be computed exactly at criticality, in terms of
hypergeometric functions. The details will be given else-
where [14].

Percolation.—The Coulomb gas formulation of the
Q-state Potts model is similar to the above, except that it
is valid only at the critical point [1]. The model is first
mapped onto the random cluster model, in which every
cluster configuration is weighted by a factor of p��1 2 p�
for each bond and Q for each cluster. Each cluster may
be identified by its outer and inner hulls, which form a
dense set of closed loops. At criticality, each hull then
carries a weight

p
Q. Once again this may be mapped

onto a gas of oriented loops with phase factors e6px ,
where

p
Q � 2 cospx , and then to a free field theory,

where, however, this time g � 1 2 x . The central charge
then vanishes for g � 2

3 , corresponding to x � 1
3 or

Q � 1, the percolation limit. Once again one may define
a nonlocal operator which counts the hulls which surround
a marked point with a different weight

p
Q0 � 2 cospx 0,

and standard Coulomb gas methods then lead to a result
identical in form to (1) for its dimension x�Q; Q0�. For
this to be given by x�1,2� � �3g�2� 2 1, Q0 � �2 2 Q�2.

FIG. 1. Examples of loops which wind nontrivially around
four points, counted by the connected four-point function
�ssss�c.
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For Q � 3, for example, the clusters which wrap around
the marked point are counted with weight Q0 � 1. This
is consistent [15] with the identification of the Z2 twist
operator for the three-state model made in Ref. [9]. For
the Ising model (Q � 2), it is the same as the disorder
operator. Note that as Q ! 1, the O�Q 2 1� term in
s�r 1 a�s�r 2 a� counts the number of clusters sepa-
rating r 6 a, as compared with the O�n� model where
it simply counted whether or not the single loop passed
between them. For this reason the lattice interpretation
of the (1,3) operator in the OPE s ? s is problematic in
this case [16].

For Q � 1 1 d and Q0 � 1 1 d0 (jdj, jd0j ¿ 1)
note that x�Q; Q0� � �1�4

p
3 p� �d 2 d0� (with d0 �

22d corresponding to x1,2), while for small Q0

x�1; Q0� �
5
48 2

3
8p

p
Q0 1 O�Q0�. As before, one

application of these results is to count the number of
clusters which surround a given point, that is, which
have to be crossed to escape to infinity. If P�M� is the
probability of there being exactly M such clusters,X

M

P�M�Q0M

� C�Q0� � pc 2 p�nx�1;Q0�,

where now n �
4
3 . For Q0 � 0 this gives P�0�, which

is the probability that the dual site R is connected to the
boundary by a set of dual bonds: this gives the usual
exponent b �

5
36 of percolation. Expanding in powers ofp

Q0 now gives

P�M� � P�0� �j ln� pc 2 p�j�2p�2M��2M�!

Note that although the amplitude in P�0� is not universal,
the ratios P�M��P�0� are.

However, this is valid only for M ø j ln� pc 2 p�j. To
find the behavior near the average value, expand around
Q0 � 1. The mean value M � �1�3

p
3 p�j ln� pc 2 p�j,

and the variance M2 2 M 2
~ j ln� pc 2 p�j also. This

implies that, as p ! pc2, the distribution of M becomes
peaked about M. Alternatively, one could work at the
percolation threshold in a finite system of size L, in which
case M � �1�4

p
3 p� lnL.

Spin quantum Hall transition.—Recently Gruzberg
et al. [10] have shown that certain properties of a model
of noninteracting quasiparticles for the spin Hall transition
(a 2D metal-insulator transition in a disordered system
in which time-reversal symmetry is broken but SU�2�
spin-rotation symmetry is not [17]) may be mapped
exactly onto percolation. In particular, the mean conduc-
tance between two extended contacts on the boundary of a
finite system is (apart from a factor of 2 for the spin sum)
equal to the mean number of distinct clusters whose outer
hulls connect the two contacts. As argued above, such
quantities are related to the derivative with respect to Q at
Q � 1 of correlation functions of a twist operator. This
will however now be a boundary twist operator. While it
is possible to adapt the above Coulomb gas arguments to
account for the boundary, since in other examples such
methods are known to fail for boundary operators, we
instead give a more direct argument.

First consider the example of an annulus of width L
and circumference W . The geometry is shown in Fig. 2.
Apart from the clusters whose outer hulls cross the sample,
there are those which touch the lower edge but not the
upper, those which do the opposite, and those which touch
neither edge. There may also be one cluster which crosses
the sample but which also wraps around the annulus, so
that its outer hulls do not connect the contacts. Denote the
numbers of such clusters in a given configuration of the
random cluster version of the Potts model by Nc, N1, N2,
Nb , and Nw , respectively. (Note that Nc � 0 if Nw � 1).
Let Zij�Q� denote the Potts model partition function with
boundary condition of type i on the lower edge and j on
the upper edge. The cases of interest are where i or j
correspond to either free boundary conditions, denoted by
f, or to fixed, in which the Potts spins on the boundary are
frozen into a given state, say 1. Then

Zff � �QNc1Nw1N11N21Nb � Z11 � �QNb � ,

Z1f � �QN21Nb � Zf1 � �QN11Nb � ,

so that

�Nc 1 Nw� � �≠�≠Q�jQ�1�ZffZ11�Zf1Z1f� . (2)

According to the theory of boundary CFT [18], Zij �
exp	p��c�24� 2 Dij� �W�L�
 as W�L ! `, where Dij

is the lowest scaling dimension out of all the conformal
blocks which can propagate around the annulus with the
given boundary conditions. When i � j this corresponds
to the identity operator, so that Dii � 0, but for the mixed
case �ij� � � f1� it corresponds to the (1,2) Kac opera-
tor, so that Df1 � D1,2 �

1
2x1,2�Q� in the previous nota-

tion. This identification was previously used at Q � 1 in
Ref. [4] to compute crossing probabilities, i.e., the proba-
bility that Nc . 0, in simply connected regions. Substitut-
ing into (2) gives �Nc� � 2pD

0
1,2�1� �W�L� as W�L ! `,

since Nw # 1. From this follows the universal critical con-
ductivity

p
3�2.

At finite W�L the corrections to the mean conductance
are expected to be of the order of e2pD2,2W�L, where D2,2 �
1
8 at Q � 1, but the full dependence requires knowledge
of the entire operator content of the model for the different

c
1

2b

FIG. 2. Annular geometry with contacts along either edge. Pe-
riodic boundary conditions are implied in the horizontal direc-
tion. Examples are shown of Potts clusters of types c, 1, 2, and
b. The mean conductance is proportional to the mean number
of type c.
3509
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FIG. 3. Simply connected region with contacts C1C2 and
C3C4 along its edge.

boundary conditions. This seems to be beyond the reach
of current methods. However, for a simply connected fi-
nite sample the arguments of Ref. [4] may be adapted.
Consider a simply connected region with contacts C1C2
and C3C4 on its boundary, as shown in Fig. 3. The re-
mainder of the boundary has hard wall conditions on the
quasiparticle wave functions, corresponding to free bound-
ary conditions on the Potts spins. The mean number of
clusters crossing between the contacts is still given by (2)
(with Nw � 0), where the different boundary conditions
are placed on the segments C1C2 or C3C4, with the re-
maining boundary Potts spins being free. This may then
be written in terms of correlation functions of boundary
condition changing operators [18]

�Nc� �
≠

≠Q

Ç
Q�1

µ
�ff1�C1�f1f�C2�ff1�C3�f1f�C4��

�ff1�C1�f1f�C2�� �ff1�C3�f1f�C4��

∂
.

These correlation functions are computed by conformally
mapping the interior of the region to the upper half plane.
Any conformal rescaling factors for Q fi 1 cancel in the
ratio, which then depends only on the cross ratio h �
�z1 2 z2� �z3 2 z4���z1 2 z3� �z2 2 z4� of the images zi

of the points Ci under this mapping. For a rectangle with
jC1C2j � W and jC2C3j � L, h � �1 2 k�2��1 1 k�2,
where W�L � K�1 2 k2��2K�k2� and K is the complete
elliptic integral of the first kind. Since ff1 is a de-
generate (1,2) operator, its four-point function satisfies a
hypergeometric equation. The details of this calculation
will be given elsewhere [14]. The result for the mean con-
ductance is

ḡ � 1 2

p
3

2p

√
ln�1 2 h� 1 2

X̀
m�1

� 1
3 �m

� 2
3 �m

�1 2 h�m

m

!
.

For W�L ¿ 1 this reproduces the above result for the
conductivity. In the opposite limit ḡ � Ae2�p�3� �L�W�, in
3510
agreement with Ref. [10], but now with a definite prefactor
A � 3G� 2

3 ��2G� 1
3 �2.
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