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Nonequilibrium Fluctuations, Traveling Waves, and Instabilities in Active Membranes
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The stability of a flexible fluid membrane containing a distribution of mobile, active proteins (e.g.,
proton pumps) is shown to depend on the structure and functional asymmetry of the proteins. A stable
active membrane is in a nonequilibrium steady state with height fluctuations whose statistical properties
are governed by the protein activity. Disturbances are predicted to travel as waves at sufficiently long
wavelength, with speed set by the normal velocity of the pumps. The unstable case involves a spon-
taneous, pump-driven undulation of the membrane, with clumping of the proteins in regions of high
activity.

PACS numbers: 87.16.–b, 05.40.–a, 82.65.Dp
The functioning of active proteins in energy-dissipating
processes, such as ion transport, protein translocation, and
biopolymer synthesis, generates forces on the membranes
of the living cell and its organelles [1,2]. As the active pro-
teins diffuse around in the membrane, the resulting fluctua-
tions in this force provide a nonthermal source of noise for
shape fluctuations of the membrane. The membranes of
a living cell are therefore nonequilibrium or active mem-
branes. Although such active, nonequilibrium processes
are abundant in biological membranes, physicists have fo-
cused mainly—with considerable success [3,4]—on the
statistical mechanics of membranes at thermal equilib-
rium. There are however reasons [5,6] to suspect that
nonequilibrium processes are at work even in red-blood-
cell flicker, traditionally explained as thermal equilibrium
shape fluctuations [7]. The predictions [8,9] of fluctuation
enhancement in active membranes and the micropipette
experiments [10] on membranes laden with the photoac-
tive proton pump bacteriorhodopsin (bR) are further moti-
vation for our studies.

In this Letter, we consider the statistical mechanics and
dynamics of a fluid membrane containing a distribution of
identical, active pumps free to move in the plane of the
membrane. By “pump” we mean a membrane-spanning
protein which, when supplied with energy, transfers ma-
terial (and thus exerts a force on the membrane) in one
direction only. This ignores the complexities of some real
pumps but is a good description of bR. By convention, we
shall term the end towards which the force acts as the head
of the pump, and the other end its tail. We shall call a pro-
tein a “1 pump” (“2 pump”) if the vector from its tail to
its head points parallel to (antiparallel to) a fixed outward
normal of the membrane. Flips from 1 to 2, prohibitively
slow in any real system, are forbidden in our treatment. A
membrane will be termed “balanced” (“unbalanced”) if the
numbers of 1 and 2 pumps are equal (unequal). The uni-
directional pumping action means that a given pump knows
up from down. In general, therefore, (i) a pump of a given
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sign will favor one sign of the local mean curvature H of
the membrane over the other (Fig. 1), and (ii) its pumping
activity will depend on H. Incorporating these effects dis-
tinguishes the present work from [8,9].

Here is a summary of our main results: (i) An ac-
tive membrane can be either linearly stable or linearly
unstable against undulation and pump aggregation,
depending on the structural and functional asymmetries
mentioned in the previous paragraph. (ii) In the stable
case, for plausible values of the physical parameters a bal-
anced active membrane has, over an appreciable interme-
diate range of wave numbers k, a height variance �jhkj

2� ~

1�k4, with a coefficient independent of the concentration
of pumps. These are truly nonequilibrium fluctuations,
with a strength depending on kinetic coefficients: �jhkj

2� is
proportional to the permeability of the membrane. This is
broadly consistent with the observations of [10]. (iii) For
a stable membrane, the longest wavelength disturbances
travel as nondispersive waves, i.e., waves with a speed
independent of wave vector k. The wave speed c is set
by the pump activity and independent of the membrane
elasticity. (iv) In this longest wavelength regime, the
height variance is much smaller, as k ! 0, than in the
equilibrium case; specifically �jhkj

2� ~
1
k2 as k ! 0.

This result depends on the effect of nonlinearities, which
also determine the final state of the system [11,12] in the
unstable case.

We now construct our model and derive the results
stated above. We characterize the active membrane by

FIG. 1. Asymmetric proteins (the black wedges) imbedded in
a fluid membrane are drawn to regions with curvature adapted
to the protein shape.
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its mean curvature H and the areal concentrations n6 of
1 and 2 pumps. In a Monge description H � 2=2h
and n6 � n6�

p
1 1 �=h�2, where h�x, t� is the height

of the membrane at time t above point x on a two-
dimensional reference plane, and n6�x, t� are the pro-
jections of the pump concentrations onto the plane. It is
useful to distinguish the protein concentration

n�x, t� � n1�x, t� 1 n2�x, t� (1)

and the signed protein density

m�x, t� � n1�x, t� 2 n2�x, t� (2)

with averages m0 and n0, respectively. For convenience,
we shall work with

c �
m
n0

, f �
n
n0

, c0 � m0�n0 . (3)

We begin with a membrane at thermal equilibrium at
temperature T � b21, where the proteins are present
but not activated. The probability of a configuration
�h�x�, c�x�	 is ~ exp�2bE� with a Hamiltonian [13]

E
h, c� �
1
2

Z
d2x 
k�=2h�2 1 s�=h�2

1 A�c 2 c0�2 2 2kH̄c=2h�
(4)

to bilinear order in the variables involved. E contains a
bending energy [3] with a rigidity k, a surface tension s,
a compression energy for the signed protein density, with
osmotic modulus

A � Tn0 (5)

for n0 ! 0, and a coupling H̄ which determines the local
spontaneous curvature induced [14] by the presence of a
protein (Fig. 1). This last term is one of the consequences
of the directionality of the pumps, and can be attributed to
a head-tail size difference of magnitude

�1 �
H̄
n0

. (6)

We expect �1 to be independent of n0 for n0 ! 0.
We now explain why (4) ignores the protein concentra-

tion field f. Minimizing (4) tells us that in thermal equi-
librium a membrane with a net imbalance c0 of pumps
will develop a spontaneous curvature

H0 � �=2h�min E �
H̄

1 2
kH̄2

A

c0 . (7)

Many experiments on the physics of membranes are carried
out on giant vesicles (size *20 mm), for which the mean
curvature and hence, from (7), c0 are negligibly small. Ac-
cordingly, we shall work at c0 � 0 for much of this paper.
In this limit, the symmetry h ! 2h, c ! 2c (equiva-
lently e ! 2e for each pump of sign e � 6) rules out
any bilinear coupling cf in (4) for c0 � 0. Thus, in a
linearized treatment of a balanced membrane, f decouples
from h and c . In addition, for c0 � 0, the mean normal
drift speed of the membrane in the active state is zero.
Towards the end of this paper we shall present some im-
portant results for c0 fi 0.

Equation (4) implies the equilibrium height variance

�jhkj
2� �

T
sk2 1 keffk4 (8)

at wave vector k, with an effective rigidity

keff � k 2
�kH̄�2

A
(9)

independent of sgn�H̄�. The dynamics of small fluctua-
tions is also determined by keff. We shall assume that H̄
is small enough to keep keff . 0 [15], so that the presence
of the inactive but shape-asymmetric proteins merely shifts
the value of the bending rigidity.

In the active state (e.g., when the bR in the experiments
of [10] is illuminated with green light) even static quanti-
ties such as �jhkj

2� must be determined from the dynamical
properties of the system. To this end, let us assemble the
ingredients for the equations of motion, to leading orders
in a gradient expansion, of a membrane with active pro-
teins. We continue to work at c0 � 0.

An isolated active pump with sign e � 6 exerts a force
eFa normal to the membrane, if the local mean curvature
H � 0. If H fi 0, the symmetry h ! 2h, e ! 2e per-
mits an additional contribution [16] �2HFa to the force,
where �2, whose sign is not fixed by symmetry, is a length
characterizing the sensitivity of the pumping mechanism
to the bending of the membrane. The force arising from
the activity of a distribution of 1 and 2 pumps with intrin-
sic concentrations n6, together with the elastic force fel
arising from (4), give rise via permeative flow with kinetic
coefficient mp [17] to a normal velocity

yn � mp
�n1 2 n2� 1 �n1 1 n2��2H

1 O�n1 2 n2�3�Fa 2 mpfel , (10)

where the O�n1 2 n2�3 (and higher odd order) terms
arise only if the presence of a given pump affects the ac-
tivity of other pumps.

Projecting (10) normal to the reference horizontal plane
[18], defining the natural velocity scale

y0 � mpFan0 . 0 , (11)

adding the contribution yhyd due to hydrodynamic flow
[7,19] and expanding in powers of =h, we obtain

≠h
≠t

� y0�c 1 �2f=2h 1 O
c3, c3�=h�2�	

2 mpdE�dh 1 yhyd 1 fh

� y0�c 1 �2=2h� 1 yhyd

2 mp�2s=2h 1 k=4h 2 kH̄=2c� 1 fh .
(12)
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Here the Gaussian zero-mean noise fh has variance [9,20]
2T 
mp 1 �1�4hq�21� at wave number q, and

yhyd � 2
Z d2q

�2p�2 eiq?x 1
4hq

dE
dhq�t�

, (13)

where hq�t� is the spatially Fourier-transformed height
field and h the solvent viscosity. The signed protein den-
sity obeys the conservation law [21]

≠c

≠t
� y0= ?

√
c2=h

1 1 �=h�2

!
1 L=2dE�dc 1 = ? fc

� LA=2c 2 LkH̄=4h 1 = ? fc , (14)

where the y0 term comes from projecting (10) parallel to
the reference plane, L is the mobility of the pumps, and
fc is a spatiotemporally white, isotropic, vector thermal
noise with variance 2TL. Since the dissipative processes
that gave rise to fh and fc are still present, we ignore
for simplicity possible additional, pumping-dependent bare
noise sources. In both (12) and (14), the first equality
is valid for a general energy function E including fc

couplings, while the second (approximate) equality applies
only to a strictly linearized treatment at c0 � 0 with f �
1. Equations (12) and (14) define our model.

Before using these equations, it is crucial to note that if
�2 or H̄ is sufficiently large and negative, then (12) and (14)
predict that a flat membrane with a statistically uniform
distribution of 1 and 2 pumps is linearly unstable, even
if keff . 0 [see Eq. (9)], with perturbations growing at
a rate proportional to k2 at small wave number k. To
see this physically (Fig. 2), imagine a region of excess
active 1 pumps surrounded by a statistically uniform 12

mixture, in an initially flat membrane. Pumping will pull
the 1 region ahead of its surroundings leading to mean
curvature H � 2=2h . 0 around the 1 pump. This can
lead to an instability in two ways: (i) If H̄ , 0, this
will attract more 1 pumps. (ii) If �2 , 0, the activity
of the 1 pumps in the region is enhanced. Such physical
mechanisms could well be involved in processes where cell
membranes undergo large deformations. Well beyond the
onset of these instabilities, nonlinearities will determine
the ultimate fate of the membrane [11,12,22].

For the remainder of this paper, we assume parameter
values corresponding to a linearly stable active membrane.
The two eigenmodes for disturbances at small wave num-
ber k are diffusive if y0�1, y0�2 are small compared to the
pump diffusivity LA, and propagative but highly disper-
sive (wave speed �k) if y0 is large enough.

More important is the height variance �jhkj
2� at wave

number k, which is obtained by linearizing and Fourier
transforming (12) and (14) in space and time, solving for
hk,v and ck,v at wave vector k and frequency v, using
the statistical properties of the noise sources fh and fc to
obtain �jhk,vj

2�, and integrating over v.
For k much smaller than the lesser of
3496
FIG. 2. Two mechanisms for instability: (a) If downward
curvature enhances the upward force exerted by a single pump,
and vice versa; (b) if the curvature produced by pumping attracts
more pumps.

kmax �
4hy0H̄

A
and kD �

4hDc

k
, (15)

setting the tension s � 0, we find from (12) and (14) that

�jhkj
2� �

T

Fan0�̄k2 1 keffk4
1

mpFa

Dc �̄k4
, (16)

where we have defined �̄ � �2 1
kn0

A �1. The thermal
wandering of the membrane is thus suppressed by a
pumping-induced tension Fan0�̄, but a novel nonequilib-
rium contribution to the height fluctuations now appears,
mimicking a zero-tension equilibrium membrane. Note
that the coupling �̄ of the pumps to the curvature is crucial
here: for �̄ � 0 we would find k25 behavior as in [8].
For n0 ! 0, the diffusivity Dc � LA of the pumps
approaches that of an isolated pump and is hence nonzero
and, from (5) and (6), the length �̄ � �2 1 �k�T ��1. The
coefficient of k24 in (16) is thus independent of n0 for
small n0.

If the tension is nonzero, the behavior in (16) is cut off
for k less than

kmin �
sA

4hy0kH̄
�

s

kkmax
. (17)

As a consequence, the excess area [23]

a �
1
2

��=h�2� �
mpFa

Dc �̄
ln

kmax

kmin
(18)
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can be seen to depend only logarithmically on the pro-
tein density n0. Moreover, increasing the solvent viscos-
ity should decrease mp while leaving Dc unaffected, and
should thus decrease a. These predictions of (18) are con-
sistent with the experiments of [10]. However, not enough
is known about the values of parameters such as mp , Fa,
and �̄ to make a detailed comparison. If instead Dc is de-
creased, �jhkj

2� should increase. Such predictions of the
dependence of static correlations on kinetic quantities al-
low clear tests of our model and of the truly nonequilibrium
nature of the fluctuations.

We turn finally to the wavelike modes mentioned at the
start of the paper. A net excess of pumps of one sign
(c0 fi 0) would yield a term y0c

2
0 =2h in the linearized

(14). With (12) this would lead to propagating waves with
a speed y0c0 � mpFam0. Even for c0 � 0, the pres-
ence of fluctuations means that �c2� fi 0. Hence, improv-
ing upon our strictly linearized treatment by letting c2 !
�c2� in (14) leads to a prediction of waves with speed
c � y0�c2�1�2 � mpFa�m2�1�2, and to a nonequilibrium
height variance �jhkj

2� � �mpy
2
0T ���y0�2 1 Dc �c2k2. It

is important to note that these waves appear only for wave

vectors k , kfluc �
q

�y0�c2��Dc�2�; for k ¿ kfluc our
earlier linearized results apply. Hence, for a system with
small fluctuations �c2�, the linearized results (16) and (18)
could well hold at the experimental wave numbers k.

In any case, for c0 fi 0, a complete analysis requires,
even at a linearized level, the inclusion of fluctuations in
the protein density n. Replacing c2 by its average, too,
is simply a first step in a complete treatment of nonlinear
fluctuation effects. A detailed consideration of all such
effects will appear elsewhere [22].

We close by summarizing this work. Starting with a
natural model of a membrane with active proteins, we show
that such a membrane can be linearly stable or unstable to
small perturbations in its shape and the distribution of pro-
teins. In the stable case, we show that the k24 dependence
of the height fluctuations can mimic that of an equilibrium
membrane, but with an enhanced temperature, consistent
with the observations of [10]. Further experiments, in par-
ticular, on the dependence of the height variance on the
protein diffusivity, will provide more stringent tests of our
predictions. We are currently in the process of studying
the effects of nonlinearities on the scaling of correlation
functions in the stable case and on the growth in the un-
stable case [11,12,22].
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