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Universal Teleportation with a Twist
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We give a transfer theorem for teleportation based on twisting the entanglement measurement. This
allows one to say what local unitary operation must be performed to complete the teleportation in any
situation, generalizing the scheme to include overcomplete measurements, non-Abelian groups of local
unitary operations (e.g., angular momentum teleportation), and the effect of nonmaximally entangled
resources.
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One of the most profound results of quantum informa-
tion theory is the discovery of quantum teleportation pro-
tocols [1–4]. Teleportation is the disembodied transport
of quantum states between subsystems through a classical
communication channel requiring a shared resource of en-
tanglement. The demonstration of teleportation elevates
entanglement from a perennial theoretical chestnut to a
practical resource. The details of protocols for teleporta-
tion may vary; specification of subsystems, the shared en-
tangled state, and the description of joint measurements at
the sender (Alice) or receiver (Bob). For example, already
there have been several experimental implementations of
teleportation [5–7] and other protocols have been proposed
[8]. We show in this paper that all teleportation schemes
can be cast in a common form with generalized (overcom-
plete) measurements and which enables us to identify the
local unitary operations required to complete a teleporta-
tion scheme.

Let us start by recalling a maximally entangled state in
H ≠ H

jC�� �
1
p

d

X
n

e2ifn jn� ≠ jn� , (1)

where �jn�� is any basis in H and d is the dimension of
H (the infinite dimensional case will be considered later).
In the following we will adopt the notation: use double ket
(bra) j · · ·�� to denote vectors in H ≠ H and customary
single ket (bra) for vectors in H .

It is now well known that we may span the set of all
maximally entangled states by local unitary operations.
Therefore, it is sufficient to consider local unitary operators
acting only on one space. In what follows we shall use a
twist operation which swaps a pair of particles. Here we
introduce a “democratic” notation so that given a pair of
systems in a state

j
!
C �� �

X
jk

cjkj j� ≠ jk� , (2)

the twisted/swapped version is denoted by
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j
√
C �� �

X
jk

cjkjk� ≠ j j� , (3)

and vice versa j
√
C �� $ j

!
C ��. The generalization to mixed

states follows trivially. A final piece of notation we intro-
duce is the transfer operator [9]

Tba �
X
n
jn�ba�nj . (4)

We now give several identities which succinctly describe
teleportation. For an arbitrary maximally entangled state
j
√
C �� one can easily show that

1,2�� !C j
√
C ��2,3 �

1
d
T31 , (5)

where the subscripts denote the particle numbers of each
of the states and operators involved.

Equation (5) implies

1,2�� !C j �jf�1 ≠ j
√
C ��2,3� �

1
d
jf�3 , (6)

where jf� is an arbitrary (unknown) quantum state; also
for linearity

2,3�� !C j �jF��1,2 ≠ j
√
C ��3,4� �

1
d
jF��1,4 , (7)

and similarly

2,3�� !C j �j√C ��1,2 ≠ jF��3,4� �
1
d
jF��1,4 , (8)

which will correspond to entanglement swapping for an
arbitrary unknown (entangled) two-mode state jF��. Some
other trivial variations of these identities are

1,2��√C j
!
C ��2,3 �

1
d
T31 , (9)

and

2,3�� !C j
√
C ��1,2 � 2,3��√C j j

!
C ��1,2 �

1
d
T13 , (10)

and other identities analogous to Eqs. (6) and (7) follow.
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Let us see how these identities allow us to understand
teleportation. Start with an unknown state and a shared ar-
bitrary maximally entangled resource jf�1 ≠ jF��2,3. Per-
form a measurement on the first two subsystems yielding
a maximally entangled result j

!
C ��1,2. We emphasize that

this measurement may be complete or overcomplete. In-
formation about which entangled state was found by Alice
is transmitted to Bob. To complete the teleportation proto-
col Bob must convert jF��2,3 into the twisted version of the
entangled state actually found by Alice, i.e., j

√
C ��2,3. This

conversion involves a local unitary operation which now
leaves us with the situation described by Eq. (6). Using
it shows that the initial unknown state at Alice’s end has
been successfully transferred to Bob.

At this point it is worthwhile stepping back and looking
at what this teaches us about quantum teleportation. In the
ideal case Alice and Bob must share a maximally entangled
state and Alice must be able to perform a measurement
which yields a maximally entangled state. The details of
the measurement, for example, whether it involves projec-
tion measurements or a positive operator valued measure
(POVM) is unimportant. The reconstruction operation re-
lies only on Bob being able to locally convert his shared
entanglement into the swapped version that Alice found.
But this is a general feature of maximally entangled states.
In fact, it lies at the heart of several other quantum com-
munication protocols. In quantum dense coding this ability
allows us to encode the square as many orthogonal states
as are supported by the Hilbert space we are acting on [10].
This yields potentially a doubled channel capacity. Simi-
larly, in any scheme which tries to implement bit com-
mitment, the freedom to locally convert any maximally
entangled state to any other allows Alice to cheat with
impunity [11,12]. Now we have shown that this same
freedom also drives the quantum teleportation protocol.
This commonality improves our understanding of the ways
in which the manipulation of shared entanglement may
be used.

In order to interpret the vector j
!
C �� as the result of a

measurement, we need an (over)complete set of maximally
entangled vectors. This can be easily achieved by having
the unitary operator U � U	g
 as an element of a group
G � �g� of transformations g with unitary irreducible
representation (UIR) U	g
 on Alice’s Hilbert space H .
Then, for any maximally entangled state jC��, one has the
identity

Z
G

dg U	g
 ≠ 'jC�� ��CjUy	g
 ≠ ' �
1
d
' ≠ ' , (11)

which easily follows from the identity (Schur’s lemma)

Z
G

dg U	g
AUy	g
 � Tr	A
' , (12)

which holds for any operator A on H . The invariant
measure dg is normalized as
Z
G

dg j�ujU	g
 jy�j2 � 1 , (13)

which is true for any pair of normalized vectors ju�, and
jy� due to the irreducibility of the representation (assum-
ing square integrable UIR for simplicity). Equation (11)
means that the set of vectors

j
!
Cg�� � U	g
 ≠ 'jC��, g [ G (14)

makes a (generally not orthogonal) POVM that represents
a measurement on H ≠ H with result g. The measure-
ment correlates Alice’s Hilbert space with the entangled
resource. Alice gets the result g and communicates it to
Bob classically, and as already mentioned Bob converts
his shared entanglement jF��2,3 into the twisted version
of the entangled state found by Alice, i.e., j

√
Cg��2,3 �

' ≠ U	g
 jC��2,3. For each result g the state jf� is tele-
ported according to the overall transformation

1,2�� !Cgj �jf�1 ≠ j
√
Cg��2,3� �

1
d
jf�3 . (15)

For discrete groups the sum replaces the integral over
G. Mathematically, Eq. (15) represents a pure instrument
[13], which describes the state reduction depending on the
outcome g of the measurement, and sends a pure state into
a pure state. In the general case such an instrument has
the form

Vxjf�
kVxjf�k

� jfx� , (16)

where x is the measurement outcome and jfx� is the state
conditioned by the result x. The case of teleportation is
peculiar because the conditioned state is identical to the
original one, independent of the measurement outcome,
and on the other hand it is “teleported” to another space.
In such a scenario the teleportation map should be regarded
in the following way:

Vgjf�1

kVgjf�1k
� T31jf�1 , (17)

where Vg � 1,2�� !Cg j
√
Cg��2,3 � 1

dT31. Notice that
Eq. (11) has the relevant feature that phase factors in the
group composition law can be neglected. In mathematical
terms this means that if the unitary representation is of the
“projective” form

U	g
U	g0
 � c	g, g0
U	gg0
 , (18)

where c	g, g0
 is a phase factor—a so-called cocycle
[14]—then, because of the peculiar form of Eq. (11) the
phase factor c	g, g0
 can be dropped.

The original case of Ref. [1] corresponds to the group
of the four Pauli matrices �', sx , sy , sz�, which is a pro-
jective representation of the Abelian dihedral group D2 of
p rotations around three perpendicular axes. Notice that
even though the projective representation is non-Abelian
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(i.e., sxsy � isz � 2sysx), the represented group is
Abelian (RxRy � RyRx � Rz , Ra denoting a p rotation
around the a � x, y, z axis).

The generalization to dimension N in Ref. [1] is again
a projective representation of an Abelian group, namely,
�N 3 �N , which is the group of discrete translations on
a lattice embedded in a torus. The representation of the
group given in Ref. [1] is

U	n, m
 �
X
k

e2pikn�N jk� �k © mj , (19)

which satisfies the composition law

U	n, m
U	n0, m0
 � e2pimn0�NU	n © n0, m © m0
 , (20)

where n © n0 denotes summation modN .
For infinite dimensional Hilbert spaces the POVM re-

lated to Eq. (14) generally needs to be expressed in terms
of unnormalizable vectors. We rewrite Eq. (14) as follows:

j
!
Qg�� � U	g
 ≠ '

X
n
jn� ≠ jn�, g [ G . (21)

(In general, the variable n may be continuous. In this case
the sum would be replaced by an integral.) Moreover, one
needs to consider nonmaximally entangled states

jC	l
�� �
X
n

cn	l
 jn� ≠ jn� , (22)

which depend on a physical parameter l [ �0, 1
 (e.g., this
could be a down-conversion gain) such that the state be-
comes maximally entangled in the limit of l ! 1 with
liml!1 jcn11	l
�cn	l
j � 1. Then we introduce the dis-
tortion operator

D 	l
 �
X
n

cn	l
 jn� �nj , (23)

and Eq. (15) now becomes

1,2�� !Qg j
√
Cg0	l
��2,3 � U	g0
D 	l
Uy	g
T31 , (24)

where

j
√
Cg	l
��2,3 � ' ≠ U	g
 jC	l
��2,3 . (25)

The teleportation map is achieved for g0 � g in the limit
of l ! 1 as follows:

lim
l!1

U	g
D 	l
Uy	g
T31jf�1

kU	g
D 	l
Uy	g
T31jf�1k
� jf�3 . (26)

The continuous variables teleportation of Ref. [3] is an
example of infinite dimensional teleportation. The group
is the Weyl-Heisenberg group of displacement operators
D	z
 � ezay2z̄a (where �a, ay� � 1 for the harmonic
oscillator algebra) with composition law D	z
D	w
 �
ei Im	zw̄
D	z 1 w
. Notice that this is just a projective
representation of the Abelian group of translations on the
complex plane. Equation (13) reads

R
�

d2z
p e2jzj2 � 1 by
3488
taking ju� � jy� � j0� (j0� denoting the vacuum for a).
The entangled state is just the down-conversion of the
vacuum

jC	l
�� �
p

1 2 l2
X̀
n�0

lnjn� ≠ jn� (27)

(a phase factor for l can always be included into the basis
definition). For l , 1 one has the teleportation map with
distortion

V	l

z jf�1

kV
	l

z jf�1k

� jf	l

z �3 , (28)

where V	l

z � 1,2�� !Qz j

√
Cz	l
��2,,3, with j

√
Cz	l
��2,3 �

' ≠ D	z
 jC	l
��2,3, and j
!
Qz��1,2 � D	z
 ≠ 'jQ��1,2, the

latter being the orthogonal POVM corresponding to the
eigenvectors of the heterodyne photocurrent [15].

Teleportation for infinite dimensional Hilbert spaces
is not restricted to maximally entangled states based on
decomposition in Eq. (21). We can define teleportation
filters that only teleport part of the Hilbert space [16].
An example is the entangled state that results from two
harmonic oscillator coherent states ja� ≠ jb�, through the
unitary transformation UK � exp	2ipayabyb
 where
a, b are the annihilation operators. The resulting state is

jP� � ja� ≠ jb1� 1 j 2 a� ≠ jb2� (29)

� ja1� ≠ jb� 1 ja2� ≠ j 2 b� , (30)

where jz6� � jz� 6 j 2 z�, which are sometimes called
cat states and are parity eigenstates (we have ignored nor-
malization). With this entangled resource/measurement
we can only teleport states that lie in the relevant two di-
mensional parity subspace of the entire Hilbert space.

The universal scheme in the present Letter allows
teleportation through entangled measurements based on
non-Abelian groups, which has never been considered
yet. The simplest case is angular momentum teleporta-
tion. We parametrize the group representation matrices as
U	g
 � exp	iw �J ? �n
, where w [ �0, 2p
 [17], �n is a unit
vector j �nj2 � 1 on a sphere, and Ja are customary angular
momentum operators. With such a parametrization the
invariant measure is dg � d �n sin2	w�2
dw�8p . The
teleportation map is then

1,2�� !Cw, �nj �jf�1 ≠ j
√
Cw, �n��2,3� �

1
2J 1 1

jf�3 , (31)

where

j
√
Cw, �n��2,3 � ' ≠ eiw �J? �njC��2,3 , (32)

for a fixed maximally entangled state jC��.
In this paper we have presented the essential mathemati-

cal description of how entanglement plus local measure-
ment and unitary transformation enables teleportation. In
this form we see that teleportation can be described as a
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FIG. 1. A schematic representation depicting how both tele-
portation and dense coding use an entangled resource and classi-
cal communication. Time runs vertically and space horizontally.
A single line represents a quantum state sent over a quantum
(noiseless) channel (Q), a double line represents classical infor-
mation sent over an ordinary classical communication channel
(C). In dense coding the quantum and classical channels are in-
terchanged from that for teleportation. It is already well known
that the steps in each protocol converting quantum to classical in-
formation (mediated by shared entanglement) involve common
Bell state measurements. In this paper, we have furthermore
shown that those steps converting classical to quantum informa-
tion (mediated by shared entanglement) also operate on a com-
mon principle: one maximally entangled state may be converted
to any other by one-sided (local) operations.

rather special POVM. Dense coding [10] can be given a
similar description, however the role played by the classi-
cal and quantum information channels is interchanged (see
Fig. 1). Both schemes rely on the ability to map shared en-
tanglement to shared entanglement through local unitary
transformations. We are thus able to see the common role
of local entanglement manipulation in quantum communi-
cation protocols.
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