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We develop a self-consistent, microscopic theory of coherent resonant secondary emission from semi-
conductor microcavities in the normal-mode-coupling regime. Our theory provides a quantitative de-
scription of the spectral, temporal, and angular properties of the disorder-induced emission compo-
nent—resonant Rayleigh scattering—and offers an intuitive physical explanation of emission properties.
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The optical properties of semiconductor microcavities
(MC), consisting of quantum wells (QW) embedded in an
optical cavity, are strongly influenced by static disorder
[1–9]. Many experimental [1,5] and theoretical [2–4]
papers studied disorder-induced effects in the dynamics
and the spectra of the specular component of MC emission
due to resonant excitation. While the specular emission is
modified by disorder, resonant Rayleigh scattering (RRS),
the coherent component of the secondary (nonspecular)
emission, exists solely due to disorder. Experimental
means to probe disorder signatures directly, by isolating
the RRS from incoherent luminescence, have been devel-
oped only recently [10,11].

First experiments on the MC RRS [7–9] showed that no
adequate theory is currently available. So far, experimental
analysis [7] had to rely on a phenomenological extension
of the QW RRS theory [12]. However, such an extension
cannot provide insight into MC RRS physics since the per-
turbative treatment of exciton-photon interaction [12,13]
employed in the QW RRS theory is inapplicable to the
normal-mode coupling regime of MC. Therefore, it re-
mains unclear how the strong, nonperturbative exciton-
photon interaction modifies the RRS emission pattern for
MC as compared to that for QW. Only a rigorous, quan-
titative MC RRS theory can clarify this issue and answer
important questions, which are now understood for QW
RRS: how the interplay between inhomogeneous and ho-
mogeneous broadening mechanisms influences the RRS
emission pattern, what determines the rise and decay be-
havior of the ultrafast RRS dynamics, etc. Development
of such a theory requires an innovative theoretical effort
since one has to abandon not only the simple perturbation
theory, but also assumptions of in-plane momentum con-
servation or 1D character of disorder, which can greatly
simplify the theory of MC specular emission [2,3].

In this Letter, we develop a novel, microscopic theory
of MC RRS using a powerful many-body language that re-
lies on propagators renormalized by both exciton-photon
and exciton-disorder interactions. This formulation is self-
3478 0031-9007�00�84(15)�3478(4)$15.00
consistent and allows expanding the RRS field and inten-
sity in terms of the orders of polariton scattering, with the
lowest order playing a dominant role. This theory makes
an important step forward by providing a comprehensive
quantitative description of the angular, spectral, and tem-
poral properties of MC RRS. The theory also incorporates
existing results [3,4] for the reflectivity (specular emission)
spectra. Furthermore, the theory offers a qualitative fil-
ter picture of the MC RRS process. This picture predicts
and explains drastic differences in the properties of RRS
for MC and for QW—in particular a “ring” pattern in the
angular distribution of MC RRS emission [9]. We also
use our theory to go beyond the currently limited experi-
mental knowledge [7–9] and (i) demonstrate the existence
of different regimes for MC RRS determined by the rela-
tive magnitude of the inhomogeneous broadening of the
QW exciton and the homogeneous broadening of the cav-
ity photon, and (ii) analyze what determines the rise and
decay of the ultrafast MC RRS dynamics. We expect the
theory to stimulate further experimental effort and lead to
a deeper insight into the optical properties of MC.

In the following, we consider RRS from a strongly
coupled exciton-photon MC system as studied experimen-
tally in Refs. [7,9] and model it by the Hamiltonian [3]:
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where k is the in-plane momentum, ak and bk are the pho-
ton and exciton Bose operators, respectively, and Ck is the
exciton-photon coupling constant. The cavity photon reso-
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cavk2, where ccav is the speed
of light in the MC, is subject to homogeneous broadening
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gp due to escape through the mirrors. A small homo-
geneous broadening gx of the exciton resonance h̄Vk �
h̄V0 1 h̄2k2�2mx is included in addition to the disor-
der that causes a dominating inhomogeneous broadening.
The detuning of the cavity photon resonance relative to
that of the exciton at wave vector k is defined by dk �
h̄vk 2 h̄Vk. The Fourier coefficient Vk corresponds to
the 2D disorder potential V �r� that depends on the po-
sition vector r � �x, y� in the QW plane and acts on the
exciton center-of-mass motion. We model V �r� by a zero-
mean, Gaussian random process, characterized by the cor-
relation function �V �r�V �r0�� � g�jr 2 r0j�, where the
angle brackets denote an average over the ensemble of re-
alizations of disorder, and assume g�r� � V 2

0 exp�2r�a�
[13], where V0 is the rms amplitude of the potential (in-
homogeneous broadening) and a is its correlation length.
As in previously used models [3,4,6], we assume that QW
disorder felt by excitons is considerably more important
than disorder in MC resonator(s) felt by cavity photons,
therefore we disregard the inhomogeneous broadening of
cavity photons.

The coherent emission following the optical excitation
of the cavity at frequency v is determined by the photon
propagator Dv

k,k0 . It follows from Eq. (1) that it obeys the
Dyson equation complemented by the Dyson equation for
the exciton propagator Gv

k,k0 [3]:
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where D
v�0�
k � �h̄v 2 h̄vk 1 igp�21 and G

v�0�
k �

�h̄v 2 h̄Vk 1 igx�21. The nonlocal, resonant inter-
action term C�

kGv
k,k00Ck00 in Eq. (2) affects the evolution

of a cavity photon between its excitation and escape
through the mirrors in two important ways: (i) the photon
and the exciton couple into MC eigenstates—polaritons;
(ii) photon momentum can change (k fi k0) due to
coupling to excitons, which can be scattered by disorder.

Previous studies [3–5] focused on calculating �Dv
k,k0�,

which is nonzero only for k � k0 and whose squared
modulus determines the spectrum of the specular emis-
sion. To provide a complete description of the spectral,
temporal, and angular properties of the MC RRS, we
need to perform a much more difficult calculation of the
average two-particle photon propagator �Dv

k,k0Dv0�
k,k0�. We

calculate this quantity along the lines set by many-body
theory [14], arriving at the expression

�Dv
k,k0Dv0�

k,k0� � Dv
k Dv0�

k0 1 jDv
k j2L

v,v0

k,k0 jDv0

k0 j2, (4)

where Dv
k is defined by �Dv

k,k0� � Dv
k dk,k0 and L

v,v0

k,k0 is
the reducible vertex function, describing the photon energy
transport in the MC. The first term on the right-hand side
(rhs) of Eq. (4) describes the specular component studied
elsewhere and will not be considered further, while the
second term describes the RRS. Despite the formal
resemblance of the present treatment to that developed
in the electronic transport theory [14], there are essential
differences. The primary difference is the presence of
excitonic resonant features in the vertex L

v,v0

k,k0 , which
is the direct consequence of the resonant interaction
term C�

kGv
k,k00Ck00 in Eq. (2). Coupling of exciton and

photon resonance poles automatically accounts for the
MC eigenmodes—polaritons. Thus, Eq. (4) allows us to
reformulate the scattering problem self-consistently, in
terms of propagators renormalized by exciton-photon and
exciton-disorder interactions and to describe the inter-
action of MC polaritons with disorder perturbatively, in
terms of single-scattering, double-scattering, etc.

A tedious calculation of L
v,v0

k,k0 by summing the in-
finite series of ladder and maximally crossed diagrams
(describing diffusion and localization phenomena [14])
showed that for realistic cavity parameters the result can be
very well described by the single-scattering approximation,
given by the simplest single-line ladder diagram. This re-
flects a fact that the MC RRS emission is primarily formed
due to a resonant polariton excitation through its photon
part, disorder-induced momentum scattering through its
exciton part, and escape back to the vacuum through the
photon part, while all higher-order processes play a minor
role. A similar conclusion about the dominance of polari-
ton single scattering in MC for the specular reflection was
reached in Ref. [4]. Therefore, we limit our further presen-
tation to a self-consistent, single-scattering approximation,
which furthermore provides a transparent physical picture
of the MC RRS.

We first approximate the series for L
v,v0

k,k0 by its leading
term, related to the two-particle exciton propagator,

L
v,v0

k,k0 � jCkCk0 j2��Gv
k,k0Gv0�

k,k0� 2 �Gv
k,k0� �Gv0�

k,k0�� . (5)

Here the expression in brackets describes the scattering
of exciton from disorder, while the factor jCkCk0 j2 deter-
mines the exciton coupling to the initial and final pho-
ton states described by the functions jDv

k j2 and jDv0

k0 j2 in
Eq. (4). To calculate Dv

k , we approximate Dv
k00,k0 in the

rhs of Eq. (2) by its mean value, dominating the photon
field in the cavity, take the average, and solve the resulting
equation analytically obtaining

Dv
k � �	Dv�0�

k 
21 2 jCkj
2Gv

k �21. (6)

We will also need the disorder-averaged exciton propaga-
tor �Gv

k,k0� � Gv
k dk,k0, which will be calculated by the

approach described in Ref. [15]. Finally, evaluating the
second term on the rhs of Eq. (4) at v � v0 in the lead-
ing order in V 2

0 , we obtain the frequency-resolved RRS
intensity Ik,k0�v� due to ultrafast (impulsive) excitation,

Ik,k0�v� � jDv
k CkGv

k j2gk2k0 jGv
k0Ck0Dv

k0 j2. (7)

The structure of Eq. (7) means that a photon with momen-
tum k and energy h̄v entering the MC passes through an
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effective filter jDv
k j2 and couples (through the Ck factor)

to an exciton state described by the resonant function Gv
k .

A polariton state is excited in the MC, since the poles of
jDv

k CkGv
k j2 are located at the polariton energies. Scatter-

ing (described by gk2k0) occurs through the exciton part of
polariton and the emission process described by the factor
jGv

k0Ck0Dv
k0 j2 is the reverse of the excitation process. All

essential properties of the MC RRS can be understood us-
ing this filter picture and can even be compared to the bare
QW case, noting that removing the cavity photon filters
jDv

k j2 and jDv
k0 j2 from Eq. (7) yields the RRS spectrum

for a bare QW.
Equation (7) allows us to gain so far unavailable in-

sight into the spectral and angular characteristics of the MC
RRS. First, we find that the MC RRS strongly depends on
the scattering angle. This is illustrated in Fig. 1. In calcu-
lations throughout the paper we use k � 1.5 3 104 cm21

(corresponding to an external angle of incidence of 11±),
gx � 0.05 meV, h̄V0 � 1.46 eV, Ck � 1.65 meV, a �
10 nm, and mx � 0.5me, and indicate the remaining pa-
rameters in the captions. The polariton dispersion (Fig. 1a)
transfers the finite broadening in the energy space into a
broadening in the momentum space. These broadenings
are accounted for in Eq. (7) by the finite spectral widths
of the input and the output filters. Thus, there exists a
range of resonantly excited polaritons (within the dashed
boxes) that participate in the RRS process and produce
the two-polariton RRS spectrum (Fig. 1c) and the momen-
tum- (or angular)-resolved RRS intensity, which is peaked
at k0 � k (Fig. 1b). The azimuthal dependence, entering
in Eq. (7) only through gk2k0 , is suppressed for typical
parameters ensuring the inequality jk 2 k0ja ø 1, hence
the momentum-resolved RRS emission is seen as a uni-
form ring (Fig. 1d)—in stark contrast with QW RRS, uni-

FIG. 1. (a) Microcavity polariton dispersion curves; (b) an-
gularly integrated RRS spectrum; (c) spectrally integrated RRS
intensity as a function of the in-plane momentum k0 of the scat-
tered photon; (d) spectrally integrated RRS intensity as a func-
tion of the components of k0. Parameters used in the calculation
are dk � 0, V0 � 0.5 meV, gp � 0.2 meV. The areas within
dashed rectangles in plot (a) show the polariton states partici-
pating in RRS.
3480
form in both polar and azimuthal angular coordinates due
to negligible exciton dispersion [16].

Second, Eq. (7) demonstrates the existence of different
regimes for MC RRS, defined by the ratio of the inhomoge-
neous (V0) and homogeneous (gp) broadenings. Figure 2
illustrates the dependence of spectrally resolved MC RRS
intensity (due to impulsive excitation) on detuning in two
opposite regimes: (a) V0 � 0.9 meV and gp � 0.4 meV
and (b) V0 � 0.4 meV and gp � 0.9 meV. Both Figs. 2a
and 2b display characteristic polaritonic anticrossing be-
havior. However, the maximum of RRS intensity is shifted
towards the photonlike polariton branch when the exciton
resonance is broader than the photon resonance (Fig. 2a)
and towards the excitonlike polariton branch in the oppo-
site case (Fig. 2b). Tuning the cavity from slightly nega-
tive to slightly positive detuning shifts the weight of the
RRS from the lower polariton branch to the upper polari-
ton branch (Fig. 2a) or vice versa (Fig. 2b), depending on
the prevailing broadening mechanism. This balance be-
tween V0 and gp also causes the maxima of RRS spec-
trally resolved intensity to appear not exactly at resonance
(dk � 0), as one might expect, but at a slightly positive or
negative detuning.

We next address another unsolved problem, that of
calculating the time-resolved MC RRS intensity after an
impulsive excitation. To reduce the high computational
cost of this quantity, determined by �jDk,k0�t�j2� 2

j�Dk,k0�t��j2, we neglect the exciton dispersion (mx !`)
and obtain an explicit expression for the 2D inverse
Fourier transform of L

v,v0

k,k0 in Eq. (5):

Lk,k0�t, t0� ~ jCkCk0 j2eiV0�t2t0�2gx�t1t0�e2V 2
0 �t21t0 2��2

3
Z

d2r ei�k2k0�?r	ett0g�r� 2 1
 . (8)

We tabulate this integral on a 1024 3 1024 grid of �t, t0�,
then take 2D fast Fourier transform, multiply the result
for L

v,v0

k,k0 by jDv
k j2jDv0

k0 j2, and obtain the RRS term in
Eq. (4). The inverse 2D fast Fourier transform of this
term yields the scattered photon field autocorrelation func-
tion �E�2��t� ? E�1��t0�� identical to the time-resolved RRS

FIG. 2. Gray scale plots of the frequency-resolved RRS inten-
sity vs detuning: (a) V0 � 0.9 meV, gp � 0.4 meV, (b) V0 �
0.4 meV, gp � 0.9 meV.
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FIG. 3. RRS dynamics for V0 � 0.9 meV, gp � 0.4 meV,
and detunings of (a) dk � 0 and (b) dk � 4 meV. Solid lines:
MC; dashed lines: bare QW. Vertical scaling of all curves is
adjusted to make the comparison of their time scales easier.

intensity at t � t0. The described procedure amounts to
calculating a fivefold integral, but, in fact, takes only a
few seconds on a PC.

Using parameters of Fig. 2a we show in Fig. 3 MC RRS
dynamics (solid lines) for two different cavity detunings
and contrast these data with RRS dynamics for the bare
QW (dashed lines), not embedded in a cavity. The beats
seen in the MC RRS are due to the coherent excitation
of both polariton branches, and the different beat periods
are due to different polariton splitting for different detun-
ings. While the QW RRS dynamics, given by Eq. (8) with
t � t0, rises on the scale t � h̄�V0 [12], the MC RRS
dynamics is determined by the effective polaritonic filters
discussed above. At dk � 0 (Fig. 3a), both polaritons are
spectrally narrow and have almost identical strength (see
Fig. 2a). These two factors lead to the delayed rise (as
compared to QW RRS) and large-amplitude beats in MC
RRS, respectively. At dk � 4 meV (Fig. 3b) the lower po-
lariton branch spectrally broadens and the upper polariton
spectrally narrows. This results in an earlier rise of the
MC RRS as observed experimentally [7]. The MC RRS at
dk � 4 meV is primarily determined by the emission from
the lower polariton branch at early times and the MC RRS
emission maximum is seen to almost coincide with the QW
RRS maximum. At later times (t � 5 ps) the emission is
solely due to the narrower upper polariton branch, explain-
ing the absence of beats at these times. Thus, the decay
of beats in resonant secondary emission from MC is not
sufficient to conclude the absence of RRS, because the re-
sponse of the two polariton branches occurs on different
time scales. We also note an enhancement of the MC RRS
over the QW RRS at late times. It occurs due to the in-
creased time (as compared to the QW) the coherent polar-
ization “spends” in the MC before escaping to the vacuum.
For long times the decay of the MC RRS (not shown) is
essentially set by the decay of the QW RRS [13].

We conclude by pointing out the comprehensive nature
of the newly developed theory of resonant Rayleigh
scattering from semiconductor microcavities. This theory
provides a quantitative description of the spectral, tem-
poral, and angular characteristics of MC RRS. It also
qualitatively explains the angular “ring” pattern of the MC
RRS emission, and automatically accounts for polariton
coherent features in RRS. In addition, the theory predicts
different regimes for the MC RRS determined by the
competition between inhomogeneous exciton and homo-
geneous photon broadenings—such a competition makes
the MC RRS distinctly different from the QW RRS.
Finally, the power of the many-body technique employed
in this work can be naturally extended to other impor-
tant problems, such as many-body nonlinear correlation
phenomena in microcavities.
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