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We present the first results on the low-frequency dynamical and transport properties of random anti-
ferromagnetic spin chains at low temperature �T �. We obtain the momentum and frequency dependent
dynamic structure factor in the random singlet (RS) phases of both spin-1�2 and spin-1 chains, as well as
in the random dimer phase of spin-1�2 chains. We also show that the RS phases are unusual “spin-metals”
with divergent low-frequency conductivity at T � 0, and follow the spin conductivity through “metal-
insulator” transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1�2 case and
by the strength of disorder in the spin-1 case.
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Low-dimensional quantum spin systems in the presence
of disorder are a fascinating laboratory for the study of the
interplay between quantum effects, strong correlations and
disorder. This is, in part, because they are often very sensi-
tive to disorder, and display dramatic effects due to small
amounts of disorder (especially in one dimension). The
question of disorder effects is thus of considerable experi-
mental importance in such cases. Moreover, a great deal is
now known about the effects of strong correlations and
quantum fluctuations in pure one- and two-dimensional
spin systems [1], allowing one to focus on the new fea-
tures introduced by disorder.

Random antiferromagnetic spin-1�2 chain compounds
are interesting, experimentally realizable examples [2,3]
of such systems. Theoretical work has led to the predic-
tion that even a small amount of disorder can cause these
systems to have an extremely unusual “random singlet”
(RS) ground state for a range of parameter values [4–6].
In this RS state, the interplay of disorder and quantum
mechanics locks each spin into a singlet pair with another
spin; the two spins in a given singlet pair can have arbi-
trarily large spatial separation. A similar RS state is also
predicted in the spin-1 Heisenberg antiferromagnetic chain
for sufficiently strong randomness in the bonds [6,7]. The
theory also yields unusual results for the low-temperature
thermodynamics and some ground-state correlators in the
RS states.

In this Letter, we report on the first theoretical study of
the dynamical and transport properties of these systems;
the primary motivation is of course to understand the dy-
namics and transport when quantum interference, strong
correlations, and disorder are all simultaneously important.
We focus here on the momentum and frequency dependent
dynamical structure factor S�k, v� and the dynamical spin
conductivity. The former is directly probed by inelastic
neutron scattering (INS) experiments on these compounds,
while the latter is of considerable theoretical interest as it
contains information about the nature of any localization
phenomena, or lack thereof, in these strongly correlated
disordered systems.
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In particular, we calculate the low-temperature S�k, v�
at low frequencies in the RS states of spin-1�2 and spin-1
chains as well as in the “random dimer” (RD) phase of
spin-1�2 chains that is predicted [8] in the presence of
weak enforced bond dimerization and strong disorder. Our
results lead us to expect some very unusual features in
the INS cross section as a function of wave vector trans-
fer k (for fixed, small energy transfer v * T ), especially
in the RD phase. For the conductivity, we calculate the
real part of the low-frequency dynamical spin conductivity
s0�v� at low temperatures and show that the RS phases of
both spin-1�2 and spin-1 chains are actually unusual “spin-
metals” with a s0�v� that diverges for low v at T � 0. We
also follow s0�v� across novel “metal-insulator” transi-
tions to insulating states; these are accessed in the spin-1�2
case by turning on dimerization (leading to a RD phase) or
by increasing the Ising anisotropy above a threshold, and
are accessed in the spin-1 Heisenberg case by reducing the
disorder below a critical value. Thus, we are able to obtain
a wealth of reliable information about the unusual dynam-
ics and transport in these strongly correlated random quan-
tum systems. We emphasize that all our results are exact
in the low-frequency limit at T � 0, and they continue to
be valid for T fi 0 as long as T & v (in some cases, we
are also able to access frequencies v , T [9]).

In the spin-1�2 case, the specific problem we consider
is the random XXZ Hamiltonian, which describes the low-
energy (magnetic) dynamics of insulating antiferromag-
netic spin-1�2 chain compounds [2,3] with chemical
disorder that affects the bond strengths:

HXXZ �
X
j

�J�
j �sx

j sx
j11 1 s

y
j s

y
j11� 1 Jz

j sz
j sz

j11� , (1)

where �sj are spin-1�2 operators at lattice sites j sepa-
rated by spacing a, and both J�

j and Jz
j are random posi-

tive exchange energies with a joint probability distribution
P0�J�, Jz�. Detailed information on the nature of the exci-
tations in such systems is encoded in the dynamical struc-
ture factor Sab�k, v� (where ab � 12 or ab � zz)
with the T � 0 spectral representation
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(2)

where s6 � sx 6 isy and 	jm�
 denote the exact eigen-
states of the system with energies Em (j0� is the ground
state, with E0 � 0).

As mentioned earlier, we characterize transport
in terms of the dynamical conductivity s�v�. The
real part s0�v� of s�v� is defined by the relation
P�v� � s0�v�j=Hj2�v�, where P�v� is the power
absorbed per unit volume by the system when a uniform
magnetic field gradient =H�v� (where the field H always
points in the z direction) oscillating at frequency v is
applied along the length of the chain. From standard linear
response theory, we have the following Kubo formula for
s0�v� at T � 0:

s0�v� �
1

vL

X
m

Ç
�mj

LX
j�1

tjj0�
Ç2

d�v 2 Em� , (3)

where tj � 2iJ�
j �s1

j11s2
j 2 s1

j s2
j11��2 is the current op-

erator on link j that transfers one unit of the z component
of the spin from one site to the next, and the frequency v

is taken positive for notational convenience. Note that both
Sab�k, v� and s0�v�, as defined here, are self-averaging
in the thermodynamic limit.

Randomness in the bonds is a relevant perturbation
[5] for the pure XXZ chain when 0 # Jz�J� # 1; any
amount of disorder is thus expected to drive the system
to strong disorder. In this regime, the system can be
treated by a strong-randomness renormalization group
(RG) that proceeds as follows [4,6,10]: We look for the
bond with the largest J� in the chain, say, J�

23 between
spins 2 and 3—this sets the energy cutoff V � max	J�

j 
.
We first solve the corresponding two spin problem (the
neighboring bonds are introduced later as perturbations).
As long as the Jz are not large compared to the J�,
the ground state of the two-spin problem will always
be a singlet separated by a large gap from the triplet
excited states. We can then trade our original Hamiltonian
in for another Hamiltonian (determined perturbatively
in the ratio of the neighboring bonds to the strongest
bond) which acts on a truncated Hilbert space with the
two sites connected by the “strong” bond removed. To
leading order, this procedure renormalizes the Hamilton-
ian H4sites �

P3
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2 [6]. Note that the new
bond has length l̃1 � l1 1 l2 1 l3. This procedure, if it
remains valid upon iteration, thus ultimately leads to a
ground state of singlet pairs, with pairs formed over long
distances held together by correspondingly weak bonds;
this is the RS state alluded to earlier.

A complete understanding of the possible states thus
requires an analysis of the effects of iterating the basic RG
procedure. Such an analysis was performed in Ref. [6],
leading to the following conclusions: If the Jz dominate
over the J�, this procedure rapidly becomes invalid and
the ground state actually has Ising antiferromagnetic
(IAF) order. In all other cases, the ground state is a
random singlet state. The low-energy (with energy cutoff
V ø Vc, where Vc is the microscopic cutoff) effective
theory in these cases is written in terms of the n�V�L
“surviving” spin variables (the bond-length l between
successive surviving sites is now a random quantity).
When the J� dominate, this effective Hamiltonian has
all Jz

j � 0, and J� and l drawn from a universal joint
probability distribution P �J�, l j V� characteristic of
the “XX random singlet fixed point” �XX-RS� of the
RG. Between the IAF phase and this XX-RS phase lie
two kinds of critical points. If the initial problem has
full Heisenberg symmetry (Jz � J� for each bond), the
low-energy effective Hamiltonian preserves this symmetry
and has bonds strengths and lengths drawn from the same
probability distribution P �J, l j V�. In the RG language,
the Heisenberg system is controlled by the XXX-RS fixed
point. Finally, in this language, the generic critical state
is controlled by the XXZC-RS fixed point—the low-
energy effective theory has bonds and lengths drawn
from a fixed point distribution P1�J�, Jz , l j V� with
the property

R
dJz P1 � P �J�, l j V�. The probability

distributions P and P1 become infinitely broad as V ! 0;
this implies that the RG becomes asymptotically exact at
low energies and, in particular, predicts the ground-state
properties and low-temperature thermodynamics cor-
rectly. Note that, in all of the above, we have suppressed
nonuniversal scale factors multiplying the arguments of
the functions n and P ; these scaling functions however
remain the same for all systems that flow to any of the
RS fixed points.

To use the foregoing for the calculation of dynamical or
transport properties, we need to explicitly keep track of the
renormalization of the operators that enter spectral sums
such as (2) and (3). We illustrate our general approach [9]
by first calculating the T � 0 dynamical conductivity at
asymptotically low frequencies. The first step is to work
out the rules that govern the renormalization of the current
operators. Assume, once again, that J�

23 is the strongest
bond. We wish to work out perturbatively the renormal-
ized operators t̃1�2�3, which we trade in t1�2�3 for, when
we freeze spins 2 and 3 in their singlet ground state (the
other current operators to the left and right of this seg-
ment of our system are left unchanged to leading order by
the renormalization). Now, note that these other operators
have an overall scale factor in them that is nothing but the
corresponding J�. In order to be consistent, we clearly
need to work out t̃1�2�3 correct to O�J̃�

1 � by adding the ef-
fects of virtual fluctuations to the projection of t1�2�3 into
the singlet subspace [11]. An explicit calculation [9] gives
the simple result: 2t̃2 � 2t̃1�3 � 2iJ̃�

1 �s1
4 s2

1 2 s1
1 s2

4 �.
Thus, all three operators renormalize to the same operator,
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which we will denote henceforth by t̃1 for consistency of
notation.

As we carry out the RG and reduce the energy cutoff,
the above result implies that

P
j tj renormalizes to

P̃
j l̃j t̃j ,

where j now labels the nVL sites of the renormalized
lattice at cutoff scale V, and the l̃j are the lengths of the
renormalized bonds in this problem. With this in hand,
we run the RG until the cutoff is reduced to Vv � v

(note that the operator t̃j linking two sites connected by
a strong bond 	J̃�

j , J̃z
j 
 promotes the corresponding pair of

spins from their singlet ground state to the triplet state jt0�
with mz � 0, which is separated from the ground state by
precisely J̃�

j ) and rewrite (3) as

s0�v� �
1

vL

X̃
m

Ç
�mj

X̃
j

l̃j t̃jj0�
Ç2

d�v 2 Ẽm� , (4)

where the tildes are a reminder of the fact that this spectral
sum now refers to the new Hamiltonian with cutoff v

which has only nvL sites (the couplings and bond lengths
in this problem are of course drawn from the probability
distribution characteristic of the fixed point to which the
system flows in the low-energy limit).

We now have to calculate the spectral sum (4) in this
new problem. The following crucial observation allows us
to do this: At the next step of the RG, one would have
looked for all of the bonds in this renormalized problem
that have J� in the range �Vv , Vv 2 dV� and formed
singlets out of the corresponding pairs of spins. The states
with Ẽm � v that give the dominant contribution to the
spectral sum (4) correspond precisely [12] to promoting
any one of these pairs to the triplet state jt0� under the
action of the current operator living on the corresponding
bond. The matrix element for this transition is just l̃v�2,
where l̃ is the length of the bond in question. In the
thermodynamic limit, we thus have

s0�v� �
nVv

v

Z
dl dJ� v2l2P �J�, l j Vv�d�v 2 J��

� ln�Vc�v� ; (5)

the last line is the leading behavior for v ø Vc obtained
by using the results of Ref. [6] for nV and P . Notice that
this analysis holds equally well at all three RS fixed points.

Thus s0�v� diverges logarithmically for small enough
v in the unusual “spin-metal” phase controlled by the XX
fixed point [13] as well as at the critical point separating
this phase from the insulating phase with IAF order in the
ground state. Close to the transition on the insulating side,
s0�v� is suppressed below a pseudogap energy Eg ø Vc

which goes to zero as the transition is approached (for
Eg ø v ø Vc, s0 continues to diverge logarithmically
as at the critical point). The dominant contributions for
v ø Eg come from Griffiths effects in which rare fluc-
tuations in the couplings of the Hamiltonian allow a long
finite segment of the system to be “locally” in the “metal-
3436
lic” phase. A calculation of this contribution gives [9]
a low-frequency conductivity s0�v� � va ln2�v�, where
a . 0 is a continuously varying, nonuniversal exponent
that vanishes at the transition.

The dynamical structure factor can be calculated in a
similar way. Consider first Szz�k, v�. One begins with the
spectral sum (2). The leading order “operator renormal-
izations” needed in this case are particularly simple—each
spin operator remains unchanged as long as it is not part of
a singlet and renormalizes to zero upon being locked into
a singlet state [11]. As before, we run the RG until the
cutoff V � v and do the spectral sum with the renormal-
ized operators in the new problem. This renormalized sum
may be evaluated by again recognizing that it is dominated
[12] by excitations to the triplet state jt0� of pairs of spins
connected by the renormalized bond J̃� � v. The cor-
responding matrix element is simply �1 2 eikl̃��2, where
l̃ is the length of the strong bond (note that l̃�a is an
odd integer). This allows us to write, for v ø Vc and
k � p�a 1 q,

Szz�k, v�� nVv

Z
dl dJ� j1 1 eiqlj2

3 P �J�, l j v�d�v 2 J��

at all three RS fixed points. The calculation of S6�k, v�
is slightly more involved as the gap to the relevant triplet
excited state (with mz � 1) of a pair of spins connected
by a strong bond �J�, Jz� is now �J� 1 Jz��2. However,
a careful analysis [9] gives the same result as above for
v ø Vc.

Let us focus here on the regime jqj � jk 2 p�aj ø
a21 (in addition to v ø Vc). In this regime, the integral
can be evaluated using the results of Ref. [6] for P . This
gives the following rather unusual universal scaling form
at the RS fixed points (i.e., as long as the ground state does
not have IAF order):

Sab�k, v� �
A

v ln3�Vc�v�
F�jqj1�2 ln�Vc�v��y

1�2
z � ,

(6)

where ab � 12 or zz, A, and yz are nonuniversal scale
factors, and the fully universal function F�x� can be writ-
ten as

F�x� �

√
1 1

x�cos�x� sinh�x� 1 sin�x� cosh�x��
cos2�x� sinh2�x� 1 sin2�x� cosh2�x�

!
.

(7)

We now briefly summarize the effects of weak
(compared to the disorder) enforced bond dimerization
controlled by a dimensionless small parameter jdj that
sets the difference between the probability distributions of
even and odd bonds [14]. The RG flows in the vicinity
of the XX and XXX-RS states are known [6,8]; the low-
energy properties are controlled by lines of strong-
disorder random dimer [8] fixed points ending in the
XX and XXX fixed points. These RD fixed points again
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describe ground states that consist of singlet pairs; how-
ever, now the singlet bonds preferentially start from an
even (odd) site and end at an odd (even) site for positive
(negative) d. Our approach readily allows us to follow the
full crossover of the low-frequency dynamical conductiv-
ity and structure factor from the XX and XXX-RS states
to the corresponding RD phases (only the nonuniversal
prefactors differ in the two cases). Here, we focus on
results deep in the RD phases, i.e., for frequencies such
that Ḡv � jdj ln�Vc�v� ¿ 1. For the conductivity,
we obtain s0�v� � ln�Vc�v�Ḡve2c0Ḡv , which can be
written more explicitly as s0�v� � jdjvc0jdj ln2�Vc�v�,
where c0 is a nonuniversal constant. The RD phases are
thus seen to be gapless insulators. The dynamic structure
factor in the vicinity of k � p�a can be written as

Sab

µ
k �

p

a
1 q, v

∂

�
C jdj3

v12a
�1 1 cos�c1Ḡv q̄�e2c2Ḡv q̄2

� , (8)

where a � c0jdj, c1, c2, and C are nonuniversal con-
stants, and q̄ � qa�d2 is assumed ø1. This result has
striking oscillatory structure which is best understood [9]
as a novel signature of the sharply defined geometry of
the rare Griffiths regions which contribute to the scatter-
ing at a given low frequency—more precisely, the av-
erage length of the relevant Griffiths regions is of order
Ḡva�jdj2 while the RMS fluctuations in the lengths are
only of order

p
Ḡv a�jdj2.

In the spin-1 case, the specific Hamiltonian we consider
is

H �
X
j

Jj
�Sj ? �Sj11 , (9)

where �Sj are spin-1 operators and the Jj are random,
positive bond strengths; the corresponding distribution of
ln�Jj� is characterized by a width W . A renormalization
group analysis [7] reveals that the system flows to the ana-
log of the XXX-RS point described earlier only when W
exceeds a critical value Wc. In this case, our previous
results for the dynamic structure factor and the dynami-
cal conductivity continue to apply. As W is decreased,
the system undergoes a quantum phase transition to the
so-called gapless Haldane (GH) phase [7]; both the quan-
tum critical point and the GH phase in the vicinity of it are,
however, still controlled by strong-disorder fixed points
[7]. Our technique may also be used to calculate the dy-
namical conductivity at this critical point and in the GH
phase, although the details differ considerably from the
spin-1�2 case [9]. At the critical point, we find

s0�v� � ln2�Vc�v� , (10)
which is a stronger divergence than in the strong-
disorder RS phase. In the GH phase, the conductivity
goes as s0�v� � va ln2�Vc�v� for log-frequencies
ln�Vc�v� ¿ �Wc 2 W�2n�3 [n is the correlation length
exponent known [7] to equal 6��

p
13 2 1�]. This phase

is thus a gapless insulator, not unlike the RD phase of
spin-1�2 chains. The nonuniversal exponent a is given as
a � �Wc 2 W�n�3.

We close with some remarks regarding experiments.
Our results for S�k, v� near k � p�a are clearly of di-
rect relevance to low-temperature INS experiments on such
spin-chain systems, especially in the regime where the
energy transfer v satisfies T & v ø Vc. Of particu-
lar interest would be an experimental confirmation of the
coherent oscillatory structure predicted in the RD phase.
Regarding transport, we hope that our results motivate ex-
periments to probe the spin conductivity in these systems.
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