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Anomalous Scaling Dimensions and Stable Charged Fixed Point of Type-II Superconductors
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The critical properties of a type-II superconductor model are investigated using a dual vortex rep-
resentation. Computing the propagators of gauge field A and dual gauge field h in terms of a vortex
correlation function, we obtain the values hA � 1 and hh � 1 for their anomalous dimensions. This
provides support for a dual description of the Ginzburg-Landau theory of type-II superconductors in the
continuum limit, as well as for the existence of a stable charged fixed point of the theory, not in the 3D
XY universality class.

PACS numbers: 74.60.–w, 74.20.De, 74.25.Dw
Determining the universality class of the phase transi-
tion in a system of a charged scalar field coupled to a
massless gauge field, such as a type-II superconductor, has
been a long-standing problem [1]. Analytical and numeri-
cal efforts have recently focused on the use of a dual de-
scription of the Ginzburg-Landau theory (GLT) of type-II
superconductors, pioneered by Kleinert [2], in investigat-
ing the character of a proposed novel stable fixed point of
the theory for a charged superconducting condensate, in
which case the 3D XY fixed point of the neutral superfluid
is rendered unstable [3–6]. The dual formulation has also
been employed to investigate the possibility of novel bro-
ken symmetries in the vortex liquid phase of such systems
in magnetic fields [4,5].

The GLT is defined by a complex matter field c coupled
to a massless fluctuating gauge field A with a Hamiltonian

Hc ,A � m2
c jcj2 1

uc

2
jcj4 1 j�= 2 i2eA�cj2

1
1
2

�= 3 A�2. (1)

Here, e is the electron charge, and Hc ,A is invariant un-
der the local gauge transformation c ! c exp�iu�, A !
A 1 =u�2ie. The GLT sustains stable topological ob-
jects in the form of vortex lines and vortex loops; the lat-
ter are the critical fluctuations of the theory [4,5]. These
are nonlocal in terms of c , but local in a dual formula-
tion. The continuum dual representation of the topological
excitations (D � 3 only) consists of a complex matter
field f coupled to a massive gauge field h [2], with
coupling constant given by the dual charge ed , and with
dual Hamiltonian

Hf,h � m2
fjfj2 1

uf

2
jfj4 1 j�= 2 iedh�fj2

1
1
2

�= 3 h�2 1
1
2

�= 3 A�2

1 ie�= 3 h� ? A . (2)

The massiveness of h reduces the symmetry to a global
U�1� invariance. For details on how to obtain this dual
Hamiltonian, we refer the reader to the thorough exposition
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of this presented in the textbook of Kleinert [7]. For e fi 0
the original GLT in Eq. (1) has a local gauge symmetry,
the dual theory in Eq. (2) has a global U�1� symmetry. In
the limit e ! 0, A decouples from c in Eq. (1), Hc de-
scribes a neutral superfluid, and the symmetry is reduced
to global U�1�. The dual Hamiltonian Hf,h describes a
charged superfluid coupled to a massless gauge field h
with coupling constant ed , and the global symmetry is ex-
tended to a local gauge symmetry. Hence, when e ! 0,
the dual of a neutral superfluid is isomorphic to a super-
conductor. Integrating out the A field in Eq. (2) produces
a mass term e2h2�2, where an exact renormalization-group
equation for the mass of h is given by ≠e2�≠ lnl � e2 [8].
Therefore, when e fi 0, then e2 ! ` as l ! `. This sup-
presses the dual gauge field, and the resulting dual theory
is a pure jfj4 theory. Hence, in the long-wavelength limit,
the dual of a superconductor is isomorphic to a neutral
superfluid [2].

In this paper, we obtain the anomalous scaling dimen-
sions hA of the gauge field [3,9], as well as hh of the dual
gauge field. At a 3D XY critical point, hA � hh � 0.
We find that �hA � 1, hh � 0� when e fi 0, and that
�hA � 0, hh � 1�, when e � 0. We also contrast the
anomalous dimension of the dual mass field f at the
dual charged (original neutral) and dual neutral (original
charged) fixed points, obtaining hf � 20.24 in the for-
mer case, and hf � 0.04 in the latter.

A duality transformation, to a set of interacting vortex
loops, is performed on the London�Villain approximation
to the GLT. In this approximation the partition function is

Z�b, e� �
Z

DADu

3
X
�n�

exp

"
2

X
x

Ω
1
2

�D 3 A�2

1
b

2
�Du 2 eA 2 2pn�2

æ#
. (3)

Here, u is the local phase of the superconducting order
parameter c , while n is an integer-valued velocity field
(not vortex field) introduced to make the Villain potential
2p-periodic. The symbol D denotes a lattice derivative.
© 2000 The American Physical Society
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Amplitude fluctuations are neglected in this approach. The
validity of this approximation for 3D systems has recently
been investigated in detail [10].

An auxiliary velocity field v linearizes the kinetic en-
ergy. Performing the u integration constrains v to sat-
isfy the condition D ? v � 0, explicitly solved by writing
v � D 3 h, where h is forced to integer values by the
summation over n. Introducing an integer-valued vortex
field m � D 3 n, and using Poisson’s summation for-
mula, we find

S�A, h, m� �
X
x

Ω
2pim ? h 1

1
2b

�D 3 h�2

1 ie�D 3 h�A 1
1
2

�D 3 A�2

æ
. (4)

Integrating the gauge field in Eq. (4) produces a mass term
e2h2�2, giving an effective theory containing the vortex
field m coupled to a massive gauge field h

Z�b, e� �
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. (5)

The variables in Eq. (5) are defined on a lattice which is
dual to the lattice from Eq. (3), and the behavior with
respect to temperature is inverted in the new variables.
The u field in Eq. (3) describes order, while the m field
represents the topological excitations of the u field. These
excitations destroy superconducting coherence, and hence
quantify disorder [7].

Integrating out the h field in Eq. (5), we obtain the
Hamiltonian employed in the present simulations,

H�m� � 22p2J0

X
x1,x2

m�x1�V �x1 2 x2�m�x2� , (6)

V �x� �
X
q

e2iq?x

4
P
m

sin2�qm

2 � 1 l22
. (7)

In Eq. (7), the charge e and lattice-spacing a have both
been set to unity, and l is the bare London penetration
depth. At every MC step, we attempt to insert a loop of
unit vorticity and random orientation. A new energy is cal-
culated from Eq. (6), and the proposed move is accepted or
rejected according to the Metropolis algorithm. This pro-
cedure ensures that the vortex lines of the system always
form closed loops of random size and shape [5]. A sys-
tem size of 40 3 40 3 40 was used, and up to 1.5 3 105

sweeps over the lattice per temperature were used.
To investigate the properties of A and h at the charged

critical point of the original theory, Eq. (1), we have cal-
culated the correlation functions �AqA2q� and �hqh2q� in
terms of vortex correlations, obtaining
�AqA2q� �
1

jQj2 1 m2
0

√
1 1

4p2bm2
0G�q�

jQj2�jQj2 1 m2
0	

!
, (8)

�hqh2q� �
2b

jQj2 1 m2
0

µ
1 2

2bp2G�q�
jQj2 1 m2

0

∂
, (9)

where G�q� � �mqm2q�, m0 � l21, and Qm � 1 2

e2iq?m̂. All correlation functions have been calculated in
the transverse gauge = ? A � = ? h � 0.

Invoking the standard form �q2 1 m2
eff�21 for the cor-

relation functions in the immediate vicinity of the critical
point in the limit q ! 0, we find the following expressions
for the effective masses:

�mA
eff�2 � lim

q!0

m2
0

1 1 4p2bG�q�q22 , (10)

�mh
eff�2 � lim

q!0

m2
0

2b�1 2
2p2bG�q�

m2
0

	
. (11)

When e fi 0 the correlation function for A assumes the
form �AqA2q� ~ 1�q22hA at the critical point. To de-
termine hA, we compute the vortex correlator G�q�. For
l ø L � 40, we expect the behavior limq!0 G�q� ~ q2,
qh , C�T � for T , Tc, T � Tc, and T . Tc, respectively.
When these limiting forms are inserted in Eq. (10), we
see that for T # Tc, mA

eff will be finite through the Higgs
Mechanism (Meissner effect). For T $ Tc we will have
mA

eff � 0 as in the normal case of a massless photon. As-
suming G�q� ~ qh precisely at the critical point, it is seen
that h corresponds to hA from the definition of �AqA2q�.
We thus identify the scaling power of G�q� at the critical
point with the anomalous dimension of the massless gauge
field A.

Figures 1 and 2 show G�q� and the gauge field masses
mA

eff and mh
eff, respectively. At the critical point G�q� ~ q,

so that hA � 1. Note that, while mA
eff vanishes at T � Tc,

mh
eff is finite but nonanalytic. As a result of the vortex

FIG. 1. A log-log plot of G�q� for T , Tc, T � Tc, and T .
Tc, with l � a�2. For this l, Tc � 1.446. Apart from the
point q � qmin, T � 1.446 the error bars are smaller than the
symbols used.
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FIG. 2. mA
eff�m0 and mh

eff�m0 as functions of T .

loop blowout, the screening properties of the vortices are
dramatically increased, and mh

eff increases sharply.
To find hh independently, we consider first the un-

charged case l ! `, m0 ! 0. First, at an intermediate
step in the transformation Eqs. (3)–(5), the action reads

S�b, e� � 2
X
x

Ω
1

2b
l2 1 eiA ? l 1

1
2

�= 3 A�2

æ
.

(12)

Here, l is an integer field of closed current loops. Setting
e � 0 in Eq. (5), the action of the dual Villain model is
obtained,

S̃V �b, G� � 2
X
x

Ω
2pim ? h

1
1

2b
�D 3 h�2 1

G

2
m2

æ
. (13)

Here, a term Gm2�2 has been added, and S̃V �b, G� cor-
responds to the Villain action in the limit G ! 0. How-
ever, it is physically reasonable to propose that the limit
G ! 0 is nonsingular, since the added term is short ranged.
It should therefore be an irrelevant perturbation to the
long-ranged Biot-Savart interaction governing the fixed
point. Rescaling h ! he�2p in Eq. (13), we have [11]
Z�b, e� � Z̃V �e2�4p2, 1�2b�, leaving Eqs. (12) and (13)
interchangeable; hh from Eq. (13) should have the same
value as hA from Eq. (12). The above is demonstrated by
our simulations based on Eqs. (6)–(9), which are indepen-
dent of the proposed form Eq. (13).

To determine hh we study the correlation func-
tion �hqh2q� [Eq. (9)] in the limit m0 ! 0. At the
uncharged fixed point of the original theory, which
is the charged fixed point of the dual theory, we
have limq!0 2pb2G�q� � �1 2 C2�T �	q2 1 . . . , q2 2

C3�T �q21hh 1 . . . , and q2 2 C4�T �q4 1 . . . , for
T , Tc, T � Tc, and T $ Tc, respectively. Here,
C2�T � corresponds to the helicity modulus (super-
fluid density) [12], C3�T � is a critical amplitude,
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and C4�T � is the inverse of the mass of the dual
gauge field for T $ Tc. Correspondingly, we have
limq!0�hqh

2q� � 2bC2�q2, 2bC3�q22hh , and 2bC4,
for T , Tc, T � Tc, and T $ Tc, respectively. Note that
h is massless for T , Tc, while it is massive for T . Tc,
the dual system exhibits a “dual Meissner effect” for
T $ Tc. At T � Tc, we have q2 �hqh2q� 
 C3�T �qhh .
A plot of q2 �hqh2q� is shown in Fig. 3. A linear behavior
at T � Tc is found, implying that hh � 1 when e � 0.
Since hh � 1 in the uncharged case, this provides further
support for the Hamiltonian Eq. (2).

We now set e fi 0. The gauge field h becomes massive
via the term e2h2�2, which appears after integrating out
the A field in Eq. (2). In this case, limq!0�hqh2q� �
2b�m2

0 from Eq. (9), and h�r� would naively have the
trivial scaling dimension �2 2 d��2. However, the mass
term offers us a freedom in assigning dimensions to e
and h, by introducing renormalization Z-factors, here e0 �
Z

1�2
h e and h0 � Z

21�2
h h.

Prior to integrating out A in Eq. (2), the mass appears
in the term ie�= 3 h� ? A. Integration of the f field, par-
tial or complete, can only produce �=�i 2 edh� terms. In
particular, this must hold during integration of fast Fourier
modes of the f field. Thus, the term i�= 3 h� ? A is
renormalization group invariant, i.e., its prefactor must be
dimensionless. In terms of scaled fields, at the charged

fixed point of the original theory, we have A0 � Z
21�2
A A,

with ZA ~ lhA , hA � 1 [8]. For h, we use Zh ~ lD, where
D is not an anomalous scaling dimension (h is massive,
cf. Fig. 2), but rather a contribution to the engineering di-
mension of h. Inserting this into the crossterm ie�= 3

h� ? A, we find the scaling dimension �hA 1 D��2 2 1,
which must vanish. This gives the constraint D � 1 to
avoid conflicting results for hA.

Remarkably, therefore, the scaling dimension of h at
T � Tc is the same in both cases m0 � 0 and m0 fi 0.
The results for hA and hh in the previous paragraphs are
summed up in Table I.

During the simulations, we sample the distribution of
loop sizes D�p�, where p is the perimeter of a loop. This

FIG. 3. q2�hqh2q� for two different T . For l � `, Tc � 3.00.
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TABLE I. Values of hA and hh at the stable neutral and
charged critical points of the original and dual theories. FP
is an abbreviation for fixed point.

FP FP
m0 hA original theory hh dual theory

0 0 neutral 3D XY 1 charged
Finite 1 charged 0 neutral 3D XY

distribution function can be fitted to the form [4,5]

D�p� ~ p2ae2bp´�T�, (14)

where ´�T � is an effective line tension for the loops [5].
The critical point is characterized by a vanishing line ten-
sion, and close to the critical point we find that ´�T � van-
ishes as ´�T � ~ jT 2 Tcj

gf .
The vortex loops are the topological excitations of the

GL and 3D XY models; at the same time they are the real-
space representation of the Feynman diagrams of the dual
field theory. By sampling D�p�, we obtain information
about the dual field f, particularly gf can be identified
as a susceptibility exponent for the f field [5]. Using the
scaling relation gf � nf�2 2 hf�, and the fact that at
the charged dual fixed point nf � n3DXY [5], this gives a
value for the anomalous scaling dimension hf when the
value n3DXY � 0.673 is used [13].

In Ref. [5] the vortex loops of the 3D XY model have
been studied meticulously, yielding the value hf�0� �
20.18 6 0.07. Since the dual of this model is isomorphic
to a superconductor, hf�0� should be similar to hc �e� of
the original GLT.

We have studied the vortex loop distribution in both
the neutral and the charged case. In the former case we
find hf 
 20.24, in good agreement with Ref. [5]. In
the latter case the dual theory has a U�1� symmetry, and
we would expect to find hf � h3DXY . The exponent
h3DXY has recently been determined with great accuracy to
h3DXY � 0.038 [13], whereas we find hf 
 0.04 which
compares well with this value. Figure 4 shows ´�T � for
both the charged and uncharged models. It is evident that
they belong to two different universality classes.

In the case e fi 0, which corresponds to the dual
neutral case, the inverse f propagator is given by G21 �
q2 1 S�q�, where S is a self-energy, and S�q� � q22h by
definition. This gives a leading order behavior
G � 1�q22h provided h . 0, and we find h � 0.04 for
this case. On the other hand, for the case e � 0, which cor-
responds to the dual charged case, dual gauge field fluc-
tuations alter the physics, softening the long-wavelength
f field fluctuations. We obtain G21 � q4 1 S�q�,
again with S�q� � q22h , which now gives a leading
order behavior G � 1�q22h , provided h . 22. Our
result h � 20.24 for the case e � 0 (dual charged) is
consistent with this, and also with the absolute bounds
h . 2 2 D � 21, in D � 3.

A consequence of the above is that in D � 3 dimen-
sions, l � j�D22���22hA� � j at the charged critical point,
FIG. 4. ln´�T� as a function of lnjT 2 Tcj. The upper line
shows the charged case with finite e, and the lower line shows
the neutral case with e � 0. The slopes of the two straight lines
are gf � 1.315 and gf � 1.51, corresponding to the anoma-
lous dimensions hf � 20.24 (neutral, i.e., dual charged) and
hf � 0.04 (charged, i.e., dual neutral), respectively.

in contrast to l �
p

j at the 3D XY neutral critical point.
Our results are valid beyond all orders in perturbation
theory.
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