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Gap-Anisotropic Model for the Narrow-Gap Kondo Insulators
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A theory is presented which accounts for the dynamical generation of a hybridization gap with nodes
in the Kondo insulating materials CeNiSn and CeRhSb. We show that Hund’s interactions acting on
virtual 4f2 configurations of the cerium ion can act to dynamically select the shape of the cerium ion
by generating a Weiss field which couples to the shape of the ion. In low symmetry crystals where the
external crystal fields are negligible, this process selects a nodal Kondo semimetal state as the lowest
energy configuration.

PACS numbers: 72.15.Qm, 71.27.+a, 75.20.Hr
Kondo insulators share in common with the Mott insu-
lators a gap which is driven by interaction effects [1,2].
Unlike Mott insulators, they undergo a smooth cross-over
into the insulating state, where a tiny charge and spin gap
develops. These materials are generally regarded as a spe-
cial class of a heavy fermion system, where a lattice Kondo
effect between the localized spins and conduction electrons
forms a highly renormalized band-insulator [3,4].

The smallest gap Kondo insulators, CeNiSn and
CeRhSb, do not naturally fit into this scheme: they appear
to develop gapless excitations. Early measurements
showed a drastic increase of the electrical resistivity below
6 K [5], but very pure samples of CeNiSn display metallic
behavior [6]. NMR measurements are consistent with
an electronic state with a “V-shaped” component to the
density of states [7]. These results, together with other
transport properties [8–11] point to the formation of a new
type of semimetal with an anisotropic hybridization gap.

Ikeda and Miyake (IM) [12] recently proposed that the
Kondo insulating ground state of these materials develops
in a crystal field state with an axially symmetric hybridiza-
tion potential that vanishes along a single crystal axis. This
picture accounts for the V-shaped density of states, and
provides an appealing way to understand the anisotropic
transport at low temperatures, but it leaves a number of
puzzling questions. In CeNiSn and CeRhSb, the cerium
ions are located at sites of minimal monoclinic symmetry,
where the low-lying f state is a Kramers doublet

j6� � b1j 6 1�2� 1 b2j 6 5�2� 1 b3j 7 3�2� , (1)

where b̂ � �b1, b2, b3� could point anywhere on the unit
sphere, depending on the details of the monoclinic crys-
tal field. The IM model corresponds to three symmetry-
related points in the space of crystal field ground states,

b̂ �

(
�7

p
2

4 , 2
p

5
4 , 3

4 �
�0, 0, 1� , (2)

where a node develops along the x, y, or z axis respec-
tively. What mechanism selects this special semimetal out
of the manifold of gapped Kondo insulators? Neutron
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scattering results show no crystal field satellites in the dy-
namical spin susceptibility of CeNiSn [13], suggesting that
the crystal electric fields are quenched: is the selection of
the nodal semimetal then a many body effect [14]?

In this Letter, we propose that this selection mechanism
is driven by Hund’s interactions among f electrons in the
cerium ions. Hund’s interactions play an important role
in multi-f-electron ions [15]. In the Kondo semimetal, the
cerium ions are in a nominal 4f1 state, but undergo valence
fluctuations into f0 and f2 configurations. We show that
the memory effect of the Hund’s interactions in the f2-state
induces a kind of Weiss field which couples to the shape
of the cerium ion. When this field adjusts to minimize the
Hund’s interaction energy, the nodal IM state is selected.

To develop our model, we classify each single-particle f
configuration by a “shape” �a � 1, 2, 3� and a pseudospin
quantum number �a � 61�, where

f
y
16j0� � j 6 1�2� ,

f
y
26j0� � j 6 5�2� , (3)

f
y
36j0� � j 7 3�2� .

There are eight multipole operators,

�G�a � f
y
bsLa

b,cfcs , �a � 1, 8� , (4)

which describe the shape of the cerium ion, where the La

matrices are the eight traceless SU(3) generators, normal-
ized so that Tr�LaLb� � dab. We shall describe the low
energy physics by an Anderson model H � Ho 1 Hf ,
where

Ho � Hc 1
X
jas

V �cy
as� j�fas� j� 1 H.c� , (4)

and Hc �
P

ks ekc
y
kscks describes a spin-1�2 conduc-

tion band hybridized with a lattice of localized f-states.
The operator
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creates a conduction electron in a l � 3, j � 5�2 Wannier
state at site j with shape-spin quantum numbers �a, s�, Ns

is the number of sites, and

Ys
aa�k̂� � Y

mJ2s
3 �k̂� � 1

2s, 3mJ 2 s j
5
2mJ�

defines the form factors, in terms of spherical harmon-
ics and the Clebsh-Gordon coefficients of the j � 5�2
f1-state [16], where mJ � mJ�a, a� maps the spin-shape
quantum numbers to original azimuthal quantum number
of the f-scattering channel. Following previous authors
[17], we regard H as a low energy Hamiltonian, so that
hybridization strength V is a renormalized quantity, that
takes into account the high energy valence and spin fluc-
tuations.

The term
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describes the residual low-energy interactions among the
f electrons: the second term is a Coulomb interaction
term. The third term is a Hund’s interaction which fa-
vors 4f2-states with maximal total angular momentum. In
an isotropic environment, this interaction would take the
form 2

g
2 J2, where J is the total angular momentum opera-

tor, but in a crystalline environment it takes on a reduced
symmetry which we model in a simplified form by 2

g
2G

2.
In general, the Hund’s interaction is only invariant under
discrete rotations so that fluctuations into the f2-state en-
able the system to sample the crystal symmetry even when
the conventional crystal field splittings are absent.

Suppose the crystal electric field term were unquenched,
so that H ! H 2

P
a ? Gj . The shape of the cerium ion

�Gj� � G is determined by the condition that the energy is
stationary with respect to variations in G,

N21
s d�Ho��dG � a 1 gG . (9)

The second term is a feedback or “Weiss” contribution to
the crystalline electric field, created by fluctuations into
the 4f2-state. Generally, the induced field G will follow
the crystalline electric fields a, but in situations where the
valence and spin fluctuations are rapid enough to quench
the external crystal electric field [13], then a � 0, and
the Weiss field becomes free to explore phase space to
minimize the total energy. In such a situation, the shape
of the cerium ion is determined by the interactions, rather
than the local conditions around each ion.

To explore this process, we carry out a Hub-
bard-Stratonovich decoupling of the interactions,

Hf� j� ! f
y
j ��Ef 1 lj�1 1 Dj ? L � fj 1 Eo�lj ,Dj� ,

(10)

where

Eo�lj ,Dj� �

µ
D2

j

2g
2

l
2
j

2U
2 lj

∂
, (11)

Here Da� j� 	 2gGa� j� is a dynamical Weiss field, and
fj denotes the spinor fj � fas� j�. Note that, in the path
integral, the fluctuating part of lj , associated with the sup-
pression of charge fluctuations, is imaginary. We now seek
a mean-field solution where the Weiss field lj � l and
Dj � D, and E�lj ,Dj� � Eo . Such an expectation value
does not break the crystal symmetry. However, the se-
lected crystal field matrix D ? L must adjust to minimize
the total energy. Supposing we diagonalize this matrix,
writing D ? L � UDoUy, where Do � diag�D1, D2, D3�
and D1 . D2 . D3. In the basis, f̃as� j� � U

y
abfbs� j�,

the crystal field is diagonal. In practice, the strength of the
Hund’s interaction g is so large that the excitation ener-
gies D1,2 2 D3 substantially exceed the Kondo tempera-
ture. In this case, the mean-field Hamiltonian must be
projected into the subspace of the lowest eigenvalue. In
the hybridization, we therefore replace

c
y
j fj � c

y
j U f̃j ! ba�cy

as� j�f̃s� j�� , (12)

where f̃s� j� � f̃3s (dropping the superfluous index “3”)
describes the lowest Kramers doublet and ba � Ua3. To
satisfy the constraint �nf� � 1, the energy of the lowest
Kramers doublet must be zero, i.e., Ef 1 l 1 D3 � 0.
We then arrive at the mean-field Hamiltonian

H� � Hc 1 V
X
k

�fsa�k�cy
ksfak 1 H.c.� 1 NsEo ,

(13)

where fsa�k� �
P

a baY
s
aa�k̂� is the dynamically gener-

ated form factor of the hybridization [16]. The transformed
hybridization is no longer rotationally invariant: all infor-
mation about the anisotropic wave function of the cerium
ion is now encoded in the vector b̂.

The quasiparticle energies associated with this Hamilto-
nian are

E6
k � ek�2 6

q
�ek�2�2 1 V 2

k . (14)

Here, the hybridization can be written in the con-
venient form V 2

k � V 2Fb̂�k̂� where Fb̂�k̂� �
�1�2�

P
a,s j

P
a baY

s
aa�k̂�j2 contains all the details

of the gap anisotropy. The ground-state energy is then the
sum of the energies of the filled lower band

Eg � 22
X
k

q
�ek�2�2 1 V 2

k̂ 1 NsEo . (15)

Now both l and D3 are fixed independently of the direc-
tion of b̂, so that Eo does not depend on b̂. To see this,
write the eigenvalues of the traceless crystal field matrix
as D1,2 � �1�

p
6�D 6 d, D3 � 2�2�

p
6�D. Since the up-

per two crystal field states are empty, stationarity with re-
spect to d requires d � 0. Since D3 couples directly to the

f charge, we obtain ≠Eg�≠D � 2

q
2
3 �nf� 1 �D�g� � 0,

so that D �
q

3
2g. Thus both l � 2D3 2 Ef and Do are

fixed independently of b̂. The selection of the crystal field
configuration is thus entirely determined by minimizing
the kinetic energy of the electrons.
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To examine the dependence of the mean field on b̂,
we replace the momentum sum in (15) by an energy and
angular integral,X

k

· · ·� ! N�0�

Z D

2D
de

dVk̂

4p

· · ·� , (16)

where N�0� and 2D are, respectively, the density of states
and bandwidth of the conduction band. Completing the
integral, noting that the angular average �Fb̂�k�� � 1, we
find that the shift in the ground-state energy per site due
to the hybridization is

DEg � 2N�0�V 2

∑
ln

µ
V 2

eD2

∂
1 F�b̂�

∏
, (17)

where

F�b̂� �
Z dVk̂

4p
Fb̂�k̂� ln�Fb̂�k̂�� . (18)

The weak logarithmic divergence inside F�b� favors states
with nodes. Figure 1 shows a contour plot of the mean-
field free energy as a function of the two first components
of b̂. There are three global minima and three local minima
with slightly higher free energy. The state where b̂ � ẑ,
plus two symmetry equivalents, corresponds to the IM state
and has the lowest free energy. The IM state is axially
symmetric, with a hybridization node along the ẑ, ŷ, or
x̂ axis. But the theory also identifies a new locally stable
state where b̂ � �0,

p
5�4,

p
11�4�, plus its two symmetry

equivalents. This state is almost octahedral. Like the IM
state, the hybridization drops exactly to zero along the ẑ
axis. But, in marked difference with the IM state, it almost

FIG. 1. Contour plot of the ground-state energy in mean-field
theory as a function of the two first components of the unit
vector b̂ (the third one is taken as positive). The darkest regions
correspond to the lowest values of the free energy. Arrows point
to the three global and three local minima.
344
vanishes along the �1, 1, 0� and �1, 21, 0� directions in the
basal plane.

The relative stability of the IM and the octahedral state
will, in general, be dependent on the details of our model,
such as the detailed conduction electron band structure.
For this reason, both possibilities should be considered as
candidates for the nodal semimetallic states of CeNiSn and
CeRhSb. The inset in Fig. 2 shows the density of states
predicted by these two possibilities. Although both are
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FIG. 2. Normalized thermal conductivity versus temperature
along the z axis (solid lines) and in the basal plane (dashed
lines). Top: for the Ikeda-Miyake state. Bottom: for the qua-
sioctahedral scenario. The insets show the density of states as
a function of the energy. The adjustable parameters have been
chosen as V�D � 0.08 and an impurity scattering phase shift
of p�2.
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gapless, the V-shaped pseudogap of the quasioctahedral
state is far more pronounced than in the axial state, and
is closer in character to the observed tunneling density
of states [18]. A more direct probe of the anisotropy is
provided by the thermal conductivity [19] which, unlike
the resistivity, does not show a strong sample dependence
in these compounds.

To compute and compare the theoretical thermal con-
ductivity with experiments, we compute the thermal cur-
rent correlator [20],

kij �
1

2T

Z `

2`
dvv2

µ
2

≠f
≠v

∂
N�v�
G�v�

� �V i �V j�v , (19)

where f is the Fermi function, G�v� is the quasiparticle
scattering rate, and

N�v� � �V i �V j�v �
X

�k

�V i
�k

�V
j
�k
d�v 2 �E�k� (20)

describes the quasiparticle velocity distribution, where
�V �k � �= �kE �k and E�k is given by Eq. (14). For our calcu-

lation, we have considered quasiparticle scattering off a
small, but finite, density of unitarily scattering impurities
or “Kondo holes” [21]. We use a self-consistent T -matrix
approximation, following the lines of earlier calculations
except for one key difference. In these calculations,
which depend critically on the anisotropy, it is essential to
include the momentum dependence of the hybridization
potential in the evaluation of the quasiparticle current.
Previous calculations [12] underestimated the anisotropy
by neglecting these contributions [20].

The single node in the IM state leads to a pronounced
enhancement of the low-temperature thermal conductivity
along the nodal ẑ axis. By contrast, in the quasioctahedral
state the distribution of minima in the gap give rise to a
modest enhancement of the thermal conductivity in the
basal plane. Experimental measurements [19] tend to favor
the latter scenario, showing an enhancement in thermal
conductivity that is much more pronounced in kx than in
kz or ky .

Three aspects of our theory deserve more extensive ex-
amination. Nodal gap formation is apparently unique to
CeNiSn and CeRhSb; the other Kondo insulators SmB6,
Ce3Bi4Pt3 and YbB12 display a well-formed gap. Curi-
ously, these materials are cubic, leading us to speculate that
their higher symmetry prevents the dynamically generated
contribution to the crystal field from exploring the region
of parameter space where a node can develop. At present,
we have not included the effect of a magnetic field, which
is known to suppress the gap nodes [6]. There appears to be
an interesting possibility that an applied field will actually
modify the dynamically generated crystal field to eliminate
the nodes. Finally, we note that since the spin-fluctuation
spectrum will reflect the nodal structure, future neutron
scattering experiments [22] should, in principle, be able to
resolve the axial or octahedral symmetry of the low energy
excitations.
In conclusion, we have proposed a mechanism for the
dynamical generation of a hybridization gap with nodes in
the Kondo insulating materials CeNiSn and CeRhSb. We
have found that Hund’s interactions acting on the virtual
4f2 configurations of the cerium ions generate a Weiss
field which acts to cooperatively select a semimetal with
nodal anisotropy. Our theory predicts two stable states,
one axial and the other quasioctahedral in symmetry. The
quasioctahedral solution appears to be the most promising
candidate explanation of the various transport and thermal
properties of the narrow-gap Kondo insulators.
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