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Zero-Conductance Resonances due to Flux States in Nanographite Ribbon Junctions

Katsunori Wakabayashi1,2 and Manfred Sigrist1
1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

2Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573, Japan
(Received 15 July 1999)

Electronic transport properties through junctions in nanographite ribbons are investigated using the
Landauer approach. In the low-energy regime ribbons with zigzag boundary have a single conducting
channel of edge states. The conductance as a function of the chemical potential shows a rich structure
with sharp dips of zero conductance. Each zero-conductance resonance is connected with a resonant
state which can be interpreted as the superposition of two degenerate flux states with Kekulé-like current
patterns. These zero-conductance dips are connected with a pronounced negative magnetoresistance.

PACS numbers: 72.10.–d, 73.23.Ad, 73.40.Rw, 73.50.–h
The discovery of fullerene molecules and carbon nano-
tubes has triggered intensive research on various nano-
meter-size carbon materials [1,2]. In these systems, the
geometry of sp2 carbon networks crucially affects the elec-
tronic states near the Fermi level. Studies with scanning
tunneling microscopy and spectroscopy have confirmed the
connection between the electronic states of the single wall
carbon nanotubes (SWCN) and their geometry [3]. Re-
cently, the electrical transport measurement of individual
SWCN became possible [4–7] and the quantized conduc-
tance of multiwall carbon nanotubes was observed [8].
This initiated theoretical studies devoted to effects of
nonmagnetic impurities [9], electron correlation [10], and
topological defects [11–15]. Besides these closed carbon
molecules, there are also systems with open boundaries
which display unusual features connected with their shape.
They include small scale systems based on graphite,
so-called nanographites. There are two basic shapes of
regular graphite edges, called armchair and zigzag edges,
depending on the cutting direction of the graphite sheet.
Properties originating from such edges have been stud-
ied recently using the model of graphite ribbons, one-
dimensional graphite stripes of infinite length and finite
width. Ribbons with zigzag edges (zigzag ribbons) pos-
sess electron states localized near the edge with energies
very close to the Fermi level [16–18]. Such states are
absent for ribbons with armchair edges. The edge states of
zigzag ribbons were analyzed in terms of nearest-neighbor
tight binding models [16–18] and density functional
approach [19]. It was also pointed out that the edge
states play important roles in the magnetic properties
in nanometer-size systems due to their relatively large
contribution to the density of states at the Fermi energy
[16,18]. Recently, experimental evidence for edge states
has been reported for nanographite systems derived from
graphitized diamond nanoparticles [20].

In this Letter, we investigate the transport properties
of ribbons related to these edge states. For this purpose
we design three different types of junctions which con-
nect zigzag ribbons of the same or different widths. The
electronic states are described by a single-orbital nearest-
0031-9007�00�84(15)�3390(4)$15.00
neighbor tight binding model. The conductance of the
junctions is evaluated using the multichannel Landauer for-
mula [21],

G�E� �
e2

p h̄

X
m,n

jtmn�E�j2, (1)

where tmn�E� is a transmission coefficient from mth chan-
nel to nth channel at energy E, calculated by a recursive
Green’s function method [22]. Before discussing the de-
sign of the junctions and their conductance properties, we
review a few facts concerning the low-energy states in two
kinds of graphite ribbons, the zigzag and the “bearded”
ribbon (a variant of a zigzag ribbon).

Zigzag ribbon.—The zigzag ribbons are metallic for ar-
bitrary ribbon width. The most remarkable feature is the
presence of a partly flat band at the Fermi level, where the
electrons are strongly localized near the zigzag edge. Each
edge state has a nonvanishing amplitude only on one of the
two sublattices, i.e., nonbonding character. However, in a
zigzag ribbon of finite width, two edge states coming from
both sides have finite overlap. Because they are located
on different sublattices, they mix into a bonding and an-
tibonding configuration. In this way the partly flat bands
acquire a dispersion [Fig. 1(b)]. Note that the overlap is
increasing as k deviates from p�a, because the penetra-
tion depth of the edge states increases and diverges at k �
2p�3a, where a is the lattice constant. The dispersion de-
pends on the ribbon width N (number of zigzag lines from
one side to the other). Close to k � p�a, the spectrum
has the approximate form Ek � 62tNDN21

k �1 2 Dk�2�,
where Dk � 2 cos� ka

2 �, and t is the hopping matrix ele-
ment. Thus, although the edge states on each side sepa-
rately have nonbonding character, together through their
overlap they provide one conducting channel except at ex-
actly E � 0. The energy region of single-channel trans-
port is restricted by the energy gap (Dz) to the next channel
Dz � 4t cos��N 2 1�p��2N 1 1�� [18].

Bearded ribbon.—The bearded ribbon has one zigzag
edge and one edge which has additional bonds (beard)
attached to the zigzag edge [Fig. 1(a), region M]. The edge
© 2000 The American Physical Society
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FIG. 1. (a) The structure of the graphite ribbon junction. The length of the junction, l, is given by the number of attached bonds
in the shaded region. (b) The schematic figure of energy band dispersion near E � 0 of zigzag ribbons (left) and bearded ribbons
(right). (c) The energy dependence of the conductance, for l � 5, 10, 15, and N � 30. (d) The Fourier transform F (k shows a
dominant peak structure corresponding to the Kekulé-like circular current pattern. (e) The energy dependence of the peak value
F�Q� showing zeros at the zero-conductance dips. (f ) The energy dependence of the phase u of the transmission coefficient of
l � 15 when N � 30 (dashed line shows the conductance).
states of both sides reside on the same sublattice so that in
spite of their overlap their nonbonding character is retained
and a completely flat band at E � 0 is resulting for any
width N [Fig. 1(b)]. The absence of dispersion leads to
the insulating behavior for the edge state channel. The
gap (Db) to the first conducting channel is given by Db �
4t cos�Np��2N 1 2�� [18].

We now turn to the design of a junction connecting two
zigzag ribbons denoted by L (left) and R (right). As a first
example, we consider the case depicted in Fig. 1(a) where
the junction region denoted by M is a bearded ribbon of
length l (number of attached bonds). This junction model
represents a metal-insulator-metal junction providing an
illustrative example for the peculiar transport properties of
graphite ribbons regardless of the question as to whether
bearded ribbons could be realized in nature. We calculate
the conductance G�E� numerically within the energy range
jEj , Db�2. The result for N � 30 and different values
of l is shown in Fig. 1(c) using a logarithmic scale on the
energy axis. The most striking feature is the large number
of zero-conductance dips at energy values which depend
on l. These dips represent resonances of total reflection.
In the whole energy range no transmission resonances are
observed for any value of l. Note also that the change of
N does not lead to a qualitative change and only modifies
the energy range of single-channel conductance.

Resonances are associated with discrete quantum levels
in the junction regions. In the following we would like to
characterize the quantum states encountered here and dis-
cuss the origin of total reflection. It was noticed earlier
that some graphite ribbons form a triangular Kekulé pat-
tern of circular current driven by special external boundary
conditions [18]. To investigate whether the junction states
responsible for the resonance display a similar structure,
we introduce the current vortex amplitude defined on the
dual (triangular) lattice as the clockwise circular sum of
the currents Ii,p on the bonds of the pth hexagonal pla-
quette, Vp �

P6
i�1 Ii,p . An incident current from the left

lead L yields a flow in the junction region. The pattern
of Vp is most easily visualized by its Fourier transform,
F�k� �

P
p Vp cos�k ? rp� in the junction region [rp: co-

ordinate of the ring center and kx�ky� discrete wave num-
bers along (perpendicular to) zigzag lines in the junction].
The function F�k� shows a clear peak structure which is
dominated by a correlation at finite momenta (k � Q)
as shown in Fig. 1(d) for the case of l � 15 and N � 30.
This corresponds to the anticipated triangular Kekulé cur-
rent pattern, analogous to a flux state in the sense that a
strong correlation among the circular currents exists in the
junction. Note that this type of current correlation is pre-
sent only in the junction region and does not appear in the
leads far away from the scattering centers. The correlation
peaks F�Q� disappear and change sign at each of the zero-
conductance dips [see Fig. 1(e)] as well as F�k � 0� which
represents the overall vorticity of the current flow [28].
Also the average �jVpj� vanishes at the zero-conductance
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dip, confirming clearly that no circular current is flowing in
every individual plaquette. These properties show that the
resonant state leading to the total reflection can be under-
stood as a standing wave resulting from the superposition
of a triangular Kekulé current pattern of opposite chirality.

The presence of this quantum level plays an important
role for the realization of the zero-conductance resonances.
At each resonance the transmission is not only carried by
the usual tunneling through the insulating junction region,
but also through this resonant state. This decomposition
into two channels can yield the following form for the
transmission amplitude between the two leads close to a
resonance at energy E0:

t�E� � t̃�E�
µ
1 2

iG�2
E 2 E0 1 iG�2

∂

�
t̃�E� �E 2 E0�

E 2 E0 1 iG�2
, (2)

where t̃�E� is a regular complex function of E and G the
width of the resonance. The destructive interference of the
two channels is a consequence of the symmetric form of
the S matrix which relates the in- and outgoing waves of
the two leads with those of the junction region [23]. This
situation has been discussed in the context of the three-way
splitter and a rigorous proof was given for the exact can-
celing at the resonant energies [23]. A consequence of
this resonant form of the transmission amplitude [Eq. (2)]
is that the phase u of t�E� exhibits a jump by p at each
resonance; see Fig. 1(f) (similar to Refs. [24,25]). The
behavior of the phase is well described by Eq. (2). The
form of the S matrix mentioned above as well as the degen-
eracy of the flux states of opposite chirality, combining to a
standing wave state, are based on time reversal symmetry.
This symmetry can be destroyed by applying a magnetic
field. We observe a pronounced negative magnetoresis-
tance at the zero-conductance dip where the conductance
grows proportionally to B2 for small magnetic fields B,
as we will discuss in detail elsewhere. We would like to
mention here that circular currents associated with zero-
conductance dips were recently also reported for two-
dimensional wave guides including junctions with stub
geometry [26]. Also in this case a negative magnetore-
sistance should occur.

Next, we discuss two junctions with a more realistic
design which do not contain bearded ribbons. They are
shown in Fig. 2(a) and connect zigzag ribbon leads of
different width (we show NL � 50 and NR � 30 as a
representative case). The M region contains a tilted zigzag
edge for junction A and an armchair edge for junction
B. The conductance of the two junctions is qualitatively
different. The tilted edge in A supports an edge state, simi-
lar to the bearded ribbon, on the same sublattice as the
edge state on the other side. Indeed, we find a very simi-
lar behavior of the conductance with a large number
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FIG. 2. (a) The structure of graphite ribbons junction type A
and type B. (b) The energy dependence of the conductance for
NL � 50 and NR � 30.

of zero-conductance resonances [Fig. 2(b)] which are
associated with flux states too. For junction B there is no
localized state near the armchair edge. The conductance
is rather featureless without any resonance in the energy
regime of single-channel transport. There is a zero-
conductance dip above the single-channel regime of the
lead on the left-hand side [E . Dz�N � 50��2 � 0.098t]
for both junctions. The origin is also connected with
analogous junction states which are based on flux states as
the analysis of the current pattern �F�k�� shows, although
the conditions are different here, since the transmission
occurs from three channels on the left-hand side to a single
channel on the right-hand side. We omit here a detailed
discussion of this more complicated case. For energies
above the single-channel threshold of the right-hand side
lead [E . Dz�N � 30��2 � 0.154t] no zero-dip features
appear in any case.

From this analysis we conclude that the edge structure
of the junction plays an important role in forming the reso-
nant states in the M region. It is well known that the elec-
tron states display chiral properties in graphite sheets, if
there is an imbalance between the two sublattices, e.g., by
different onsite potential [27]. The edge states on zigzag
edges are a consequence of this imbalance, since the outer-
most sites belong to a single sublattice. The abrupt change
of the sublattice on the edge as it occurs for the previous
junction and junction A yields the boundary condition to
form the degenerate flux states in the M region. These
flux states combine to one resonant state of standing-wave
nature. Further numerical analysis shows that even single
nonmagnetic impurities and other simple defect structures
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disturbing the sublattice balance can cause a zero-conduc-
tance dip associated with flux states in zigzag ribbons.

In conclusion, we numerically analyzed three types of
nanographite junctions. We found that the conductance of
various junctions having zigzag edges shows many zero-
conductance dips as a function of energy (chemical poten-
tial). These dips are identified as resonances connected
with resonant states based on flux states which form circu-
lar-current Kekulé patterns. It is obvious that the topology
of the edges is crucial for this phenomenon and the chi-
rality connected with the sublattice structure plays an im-
portant role. The time reversal symmetry necessary for the
existence of these resonances is violated by external mag-
netic fields, leading to negative magnetoresistance. While
the structures used in the calculation might be difficult to
produce at present [28], our results also suggest that trans-
port properties of defective carbon nanotubes, carpet-roll,
or papier-mâché structures [29] could be rather different
from the transport properties of usual closed multiwall
nanotubes or SWCN which have only weak features in
the low-energy regime [14]. The present study not only
clarifies the importance of the edges and their shapes on
transport properties, but also indicates the importance of
theoretical studies to explicate the interplay between the
transport properties and the network topology of carbon
atoms. The present numerical work provides the foresight
concerning the analysis based on a low-energy effective
theory, which is beyond the scope of this paper and will be
presented elsewhere. Such an effective theory will serve as
a basis for designing carbon-based electronic devices and
for further theoretical work on the effects of impurities or
electron correlation.
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