
VOLUME 84, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 10 JANUARY 2000
Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation

Milind P. Mahajan,1 Mesfin Tsige,1 Shiyong Zhang,1 J. Iwan D. Alexander,1,2 P. L. Taylor,1 and Charles Rosenblatt1
1Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106

2Department of Mechanical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
(Received 10 September 1999)

Using a novel technique that facilitates temporal control over the total body force on a liquid, an
unexpected scaling relationship was discovered for the collapse time of a liquid bridge. A paramagnetic
liquid was suspended between the tips of two collinear rods in a strong magnetic field gradient that was
adjusted to compensate gravity. A sudden change of the magnet current, corresponding to a change of
Bond number, resulted in a deformation and ultimate collapse of the liquid bridge. The collapse time
was found to be independent of the bridge length when other parameters were held constant.

PACS numbers: 81.70.Ha, 62.10.+s, 75.50.Mm
Liquid bridges, in which fluid is held captive between
two or more solid supports, have diverse applications in
fields from zone refining to porous media. The shape and
stability of liquid bridges are strongly influenced by grav-
ity, as well as surface tension and the nature of the liquid-
support contact. A bridge that is stable is zero gravity
will deform and may collapse in Earth’s gravity. Although
bridge stability has received considerable attention for over
a century [1–10], experimental studies of dynamics have
been hampered by the inability to effect large, rapid change
in the total body acceleration [8,11,12]. Here we show
that the dynamics of collapsing bridges may be studied
by using an inhomogeneous, time-varying magnetic field.
Cylindrical bridges consisting of a viscous paramagnetic
liquid were initially subjected to zero net body force by
having the magnetic force exactly compensate gravity. The
magnetic force was then rapidly reduced and the collapse
time measured. An unexpected result from these experi-
ments was that the collapse time was largely independent
of the length of the bridge when other parameters were held
constant.

Rayleigh and Plateau demonstrated [1] that in zero grav-
ity a cylindrical bridge remains stable against radial fluc-
tuations so long as its length-to-diameter ratio L, known as
the slenderness ratio, is less than p . The bridge environ-
ment is typically characterized by a dimensionless number
B known as the Bond number, and is equal to geffrR2�s;
where geff is the effective body acceleration due to grav-
ity and other external forces, r is the density of the liq-
uid, R is the radius of the bridge, and s is the surface
tension. Because of the difficulty in controlling geff, ex-
periments have generally been limited to those performed
in a Plateau tank which utilizes buoyancy forces, [7] or
in space [8]. The neutral buoyancy technique uses two
immiscible fluids and permits a wide range of values of
geff, but is severely limited when studying dynamics. Al-
though space-borne experiments provide zero or near-zero
gravity conditions, they are not suitable when larger body
forces are required. Because of this, previous investiga-
tions of bridge dynamics have been limited to a narrow
range of experimental conditions. For example, very small
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bridge oscillations [8,11,12] have been simulated by a me-
chanical vibration of the column’s support rods. To date,
the only reported experimental study of the dynamics of
full collapse involved a Plateau tank experiment in which
the concentration of the bath mixture changed slowly with
time by evaporation [13]; rapid changes of Bond number
were not possible. As a consequence of such experimen-
tal constraints, the study of bridge collapse has been lim-
ited mostly to theoretical and numerical analyses of slender
bridges [13–15]. In order to circumvent many of these ex-
perimental difficulties, we have used magnetic levitation
as a powerful technique to study fluid bridges under con-
ditions ranging between geff � 0 and geff � g, where g is
the earth’s gravitational field [16,17]. This method, which
can be applied to a wide variety of fluid problems, facili-
tates large and rapid changes of the effective body accel-
eration and can easily be effected in situ, with no external
mechanical motion.

Magnetic compensation of gravity requires a spatially
inhomogeneous magnetic field [16]. For a material of
volumetric magnetic susceptibility x in a magnetic field
H, the energy per unit volume is given by U � 2

1
2xH2,

and the force per unit volume is 2=U. To compen-
sate gravity it is required that 1

2x=H2
comp � rg, where

Hcomp corresponds to the magnetic field whose gradient
just compensates gravity. For =H2 larger or smaller than
2rg�x , the liquid column will rise or sag, ultimately col-
lapsing if =H2 deviates too significantly from its gravity-
compensating value. Thus the effective body acceleration
�geff � g 2 1

2x=�H2�� may be controlled by varying the
current in the magnet.

As most ordinary fluids are weakly diamagnetic and are
incapable of being levitated except in the strongest mag-
nets, we have chosen to study glycerol doped with highly
paramagnetic manganese chloride tetrahydrate, MnCl2 ?

4H2O. For a solution that is 60% by weight MnCl2 ?

4H2O, we have determined the volumetric magnetic sus-
ceptibility to be �5.8 6 0.1� 3 1025 cgs by measuring
the value of =H2 at which geff � 0. By weighing a
known volume of solution, the density of the solution
was determined to be 1.55 g cm23. Additionally, using a
© 2000 The American Physical Society
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cone-and-plate rheometer, we measured the viscosity to be
h � 25 6 1 P at 25 ±C, the approximate temperature at
which the experiment was performed. The viscosity was
found to have a temperature variation of approximately
22 P�±C in this region. Finally, by measuring the maxi-
mum allowed Bond number Bs vs L for which a bridge
of slenderness ratio L remains stable [2], we have deter-
mined the surface tension to be 65 6 5 ergs cm22; this
value is close to the value for pure glycerol, indicting that
the MnCl2 ? 4H2O has a very small influence on the sur-
face tension.

A pair of identical coaxial cylindrical rods with coni-
cal wetting barriers was inserted into an electromagnet
equipped with Faraday pole pieces that provide a uniform
upward magnetic force. One rod was mounted on a mi-
crometer that permitted fine control over the separation
between the rods, and therefore control over the length of
the fluid column (Fig. 1). Experiments were performed
using three such pairs of rods, having radii R � 0.155,
0.115, and 0.079 cm, respectively. This allowed us to
study the influence of the bridge radius R on the collapse
time. The liquid was injected from the side using a but-
terfly syringe and hypodermic needle. We began the ex-
periment with a cylindrical bridge of a given radius and
slenderness ratio in an environment of geff � 0, corre-
sponding to Bond number B � 0; this corresponded to
a value of H=H � �2.63 6 0.06� 3 107 G2 cm21. We
then effected a rapid change DB of the Bond number by
suddenly decreasing the magnet current. Owing to the
large inductance and small electrical resistance of the mag-
net, the magnetic force (and therefore the Bond number)
would relax to its new set point in 200 ms [18]. Be-
cause t � 3 s for the fastest collapse time in our data set,
the magnet’s response approximates a discontinuity of the
Bond number. The deformation and breaking of the bridge
was video-recorded using a boroscope and CCD camera.
The collapse time t is defined as the time taken by the
bridge to break into two disconnected fluid zones, mea-

FIG. 1. Schematic representation of experimental setup.
sured from the time the Bond number is changed. For each
bridge, t was extracted from the videotape.

Bridges were studied as a function of slenderness ra-
tio for each of the three radii. Figure 2 shows a typical
collapse sequence for a bridge of radius R � 0.155 cm,
a slenderness ratio L � 2.6, and DB � 0.057. The first
five frames of the sequence are spaced in 5 s intervals;
the final frame follows the fifth frame by 4 s. A thin fila-
ment separating the lower and upper regions is seen in the
last frame; detailed studies on filament breakage have been
performed in a Plateau tank [19]. Shortly thereafter the
filament brake, and the upper and lower filament segments
retracted upward and downward, respectively. This behav-
ior has previously been observed qualitatively [9].

Analysis of the data for collapse time t vs DB in-
dicates that, for bridges of a given radius, t depends
only on the excess Bond number change d�DB� above
the bridge’s slenderness ratio-dependent stability limit
Bs [2], i.e., d�DB� � DB 2 Bs. This indicates that
we should plot our results as a function of d�DB�; the
quantity t21 vs d�DB� is thus shown in Fig. 3(a). [Note
that for DB , Bs the bridge deforms but remains stable
indefinitely, and that Bs is smaller for longer bridges
(larger L) and vanishes [1] when L � p.] In Fig. 3(a)
we see that the data lie along three distinct curves, one
for each of the three bridge radii R, and have no explicit
dependence on L.

Dimensional analysis suggests an alternative form in
which to present the data. The bridge collapse time can
depend only on the viscosity h, surface tension s, radius
R of the support rod, slenderness ratio L, Bond number
change DB, and density r. In the overdamped limit of vis-
cous flow, we must have t � hR�s 3 f�L, DB�, where
f�L, DB� is a to-be-determined function of L and DB.
When t is not too large, the surface tension will be unim-
portant and then we expect 1�t to be proportional to the
driving force, and therefore linear in DB. At the stabil-
ity limit, where DB � Bs, t ! ` and therefore the quan-
tity hR�st �� 1�f�L, DB�� must vanish. This implies
the approximate relationship hR�st � d�DB� 3 h�L�,
where h�L� is a function of only the slenderness ratio.

Accordingly, in Fig. 3(b) we show the dimensionless
quantity hR�st vs d�DB�, and see that all the data ap-
proximately fall on the same curve. Thus, we find the
surprising experimental result

hR�st � Md�DB� ,

where M is a universal dimensionless constant that is inde-
pendent of the slenderness ratio, and has a numerical value
of order 0.1.

The implication of this result is that the dominant flow
processes must occur in a segment of the liquid bridge
that is independent of the actual length of the bridge. To
see whether this is the case, and to develop a theoretical
prediction for the value of M, we turn to numerical analy-
sis, and employ a one-dimensional model due to Meseguer
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FIG. 2. Collapse sequence for a bridge of radius R � 0.155 cm and slenderness ratio L � 2.6 after changing the Bond number
from zero to 0.057. Panel (a) shows the bridge at time t � 0. Panels (b) through (f ) show the bridge at times t � 5, 10, 15, 20,
and 24 sec, respectively.
[13] in which the radial component of fluid momentum is
neglected. In this model the liquid bridge is held vertically
and is subjected to axial gravity. The liquid is assumed to
be an isothermal incompressible Newtonian fluid. The fol-
lowing additional assumptions are made: (i) Internal fluid
motion is caused only by capillary pressure gradients due to
interface deformation in response to acceleration. (ii) The
effect of the atmosphere around the bridge is negligible.
(iii) Only the axisymmetric response is considered. This
approach is a simplification of the full three-dimensional
set of equations for mass and momentum transfer in the
liquid, the balance of normal and tangential force compo-
nents at the surface, the kinematic boundary condition, the
conditions at the support rods, the requirement of axisym-
metry, and the initial conditions of a cylindrical cylinder
and zero fluid momentum; the full equation set is given
by Eqs. (1)–(10) in Ref. [20]. These equations define an
unsteady free boundary problem since the location (and
hence the shape) of the interface is a priori unknown and

FIG. 3. Collapse data vs shifted Bond number change d�DB�.
(a) The actual inverse collapse time 1�t vs d�DB�. (b) The
dimensionless ratio of radius R to collapse time t, formed by
multiplying R�t by the ratio of the viscosity h to surface ten-
sion s, is shown as a function of d�DB� for three different
support-rod diameters.
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must be determined along with the velocities and pressure
as part of the solution. The 1D Meseguer approximation
[13] allows us to reduce the complexity of the problem
and to facilitate an examination of a relatively wide range
of parameters without excessive computation time. It has
been used in several previous numerical studies of liquid
bridge dynamics [13,20] and has been shown to be valid
provided the slenderness ratio L is large, typically L . 2.
It is based on a one-dimensional model for fluid jets [21] in
which the axial velocity component is assumed to depend
only on the z coordinate and time. The approximations
and the numerical method for the solution follow the ap-
proach used by Zhang and Alexander [20].

In Fig. 4 we replot three sets of experimental data for the
quantity hR�st vs DB at different radii. The solid curves
in Fig. 4 represent numerical computations of the breaking
times calculated from the one-dimensional model, with no
free parameters. The agreement between experiment and
theory is clearly good, indicating that neglect of the ra-
dial component of momentum is an acceptable procedure.
The slight underestimate of the inverse collapse time t21

found in the simulations is likely a consequence of the ab-
sence of active temperature control in the experiment and
the resulting variation of viscosity. The curvature of the

FIG. 4. The same dimensionless ratio hR�st that is shown in
Fig. 3(b) as a function of unshifted Bond number change DB.
The solid lines are predictions of numerical computations based
on a one-dimensional hydrodynamic model.
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theoretical results prevents a unique determination of the
value of M, but it is nevertheless clear that a good quali-
tative prediction can be made by using M � 0.1 6 0.03,
consistent with experimental results.

These results show that the use of time-varying mag-
netic levitation is a powerful tool for the study of liquid
bridges. In particular, it has led to the discovery of the un-
expected independence of the collapse time rate hR�st

from variations in the slenderness ratio L. In addition,
time-varying magnetic levitation provides control that fa-
cilitates a wide variety of dynamics experiments that are
not otherwise possible either in space-borne experiments
or using the neutral buoyancy technique. Moreover, the
applicable range of Bond number is far greater than could
otherwise be accomplished with forced mechanical vibra-
tions, and avoids the additional complication of physical
motion. Phenomena as diverse as rapid acceleration or
deceleration, gravitational jitter, and earthquake vibration
may be simulated in situ with the use of this technique.
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