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By suitable interpretation of results from the linear analysis of interface dynamics, it is found that
the hydrodynamic growth of the size L of domains that follow spinodal decomposition in fluid mixtures
scales with time as L � ta , with a � 4�7 in the inertial regime. The previously proposed exponent
a � 2�3 is shown to indicate only the scaling of the oscillatory frequency v22�3 � L of the largest
structures of the system. The viscous dissipation in the system occurs within a layer of thickness Ld

that also follows a power law of the form Ld � L3�4 in the inertial regime. In the viscous regime the
growth is linear in time L � t and the dissipative region remains constant Ld � L0.

PACS numbers: 64.75.+g, 64.70.Ja
Homogeneous binary fluid mixtures phase segregate
into two phases with different composition when quenched
into thermodynamically unstable regions of the phase
diagram. Deep quenches often lead to interconnected
and/or highly concentrated branchlike structures with dif-
ferent compositions referred to as spinodal decomposition
patterns. As the decomposition evolves, sharp interfaces
develop between the regions associated with each phase,
and the structures formed coarsen to minimize their
interfacial energy. In the late stages of this process the
concentrations of the phases are close to their equilibrium
values and coarsening is dominated by hydrodynamic
rather than thermodynamic (compositional gradient) driv-
ing forces. Experimental [1–4] and only recently feasible
numerical studies [5–7] have been carried out to determine
whether there is an asymptotic hydrodynamic coarsening
regime in incompressible fluids in which the characteristic
size of the strongly segregated domains L obeys a simple
power law in time, L � ta . Exponents a ranging from
1�2 to 1 have been reported. Fits are usually attempted to
match exponents 1, 2�3, and 1�2 predicted by dimensional
analysis [8,9] and/or by other physical arguments [10,11].

There are few theoretical coarsening studies in this
regime, apparently due to the lack of techniques to deal
with such a complicated problem. Only linear analysis has
been used to further support the values of some exponents
or to explain certain qualitative properties of these systems
[8,12]. In this Letter we reassess the information provided
by linear analysis of interface dynamics and show that
in the late stages of the decomposition the segregated
domains are driven towards local stable conformations
with a growth exponent a � 4�7. This analysis confirms
that the exponent a � 1 corresponds to asymptotically
early times (the viscous regime), while the a � 2�3
exponent appears only as characterizing the oscillatory
frequency v of unrelaxed interface inhomogeneities of
wavelength l: l � v23�2 in the late stages of coarsening
(the inertial regime). While the basic results from linear
analysis are fairly old, their relevance to the problem of
hydrodynamic coarsening has not been exploited, and the
asymptotic limits of the problem are not well known.
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Some general conditions on the structure of the system
are required to interpret the results of linear analysis in the
form of a possible power law. The possibility of an asymp-
totic power law for the hydrodynamic regime requires a de-
gree of self-similarity. We propose that the evolution of the
system in the very late stages of the decomposition (sharp
interfaces) proceeds by forming locally almost stable struc-
tures, dropletlike, that pairwise or many at a time coalesce
into larger domains. More precisely, these droplets can be
understood as coherent structures whose size corresponds
to the average domain size as measured by the structure
factor of the system. If the time required for the coa-
lescence of a pair of domains into a larger one obeys a
simple scaling relation with respect to the size of the do-
mains, the late stages will exhibit a power law relation.
As shown below, the power law is related to the relaxation
rate of large domains into stable or metastable structures.
In turn, the relaxation rate can be determined from the
linear stability analysis of the bigger final domain subject
to deformations on length scales of the order of its size.

Consider a region of the mixture with a locally stable
configuration, an almost spherical domain. In its final
configuration the region will produce a contribution to
the structure factor So�k� such that, up to a constant, the
average size of the system corresponds to the radius of
the domain Ro � �k21� �

R
dk k21So�k��

R
dk So�k�.

Just before reaching this state, at a certain time t, the
system takes conformations that can be described by
deformations around this spherical shape. The average
size for such a deformed structure R�t� is always smaller
than the equilibrium size Ro since the structure factor
of the deformed shape S�k� has contributions from
smaller wavelength modes (larger k) that make �k21�
smaller. Decomposing the structure factor into the con-
tribution of the final domain So�k� and its perturbation
Sp�k, t�, the average size of the system is R�t� � �k21�t �R

dk k21�So�k� 1 Sp�k, t���
R

dk S�k�. The k modes that
appear in the perturbation are stable and their amplitudes
A�k� decay according to a relation ≠tA�k� � n�k�A�k�
with Ren , 0, so that �R 	 �k21n�k��t �

R
dk k21 3

n�k�Sp�k, t��
R

dk So�k�, since in the hydrodynamic
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regime
R

dk So�k� �
R

dk S�k, t�. Note that, since Ro .

R�t�, the pure k21 average over the perturbation modes
is always negative, but the inclusion of the n�k� factor
in the average produces a positive growth rate for the
size of the domain. If the perturbation is dominated by
structures with wavelengths comparable to the size of the
system, k � R21, and the dispersion relation follows an
asymptotic power law n�k� � k1�a , then it is possible to
conclude that the structure of size R under consideration
has been formed at a rate �R 	 R�121�a�. If the creation
of larger structures proceeds in this manner, the growth
of the system follows the power law R � ta , where the
exponent a is read from the dispersion relation for stable
modes, given below.

The linear analysis we need is that of a single large do-
main. We present a succinct derivation, following the clas-
sical text of Chandrasekar [13], of results first obtained by
Harrison [14] for a flat interface, and later we quote the
results of Miller and Scriven [15] for perturbations of a
spherical droplet. The solution for a flat interface is more
accessible and serves to show the generality of the final re-
sult. Consider deformations of a flat interface between two
masses of incompressible fluids of density r and viscosity
h (the general case of different properties leads to simi-
lar results), and a surface tension s between them. The
spectrum that is derived from the analysis corresponds to
the normal modes of the fluctuating interface but these are
easily seen to be in direct relation to compositional inho-
mogeneities. The equilibrium surface coincides with the
z � 0 plane in a suitable Cartesian frame. The initial con-
dition for the interface is given by a deformation of wave-
length k and we search for solutions of the form

z�t� � Aent coskx . (1)

It is also assumed that the velocity fields decay expo-
nentially away from the surface so that, for example, the
z component of the velocity is a linear combination of
terms of the form yz � ent cos�kx�e2qz (for z . 0). The
task at hand is to calculate the growth or decay rate n
of the wave, and the decay length q21. The linearization
of the Navier-Stokes equations and the boundary con-
ditions for the velocity fields at the interface are given
in Ref. [13], and only the main steps are sketched here.
The problem can be put into dimensionless form by intro-
ducing the characteristic length and time L0 � h2�rs

and T0 � h3�rs2. Using this convention k, q, and
n are dimensionless numbers. The velocity field has a
decomposition v � vo 1 vr in which vo is irrotational,
and the vorticity for the flow is v � = 3 v � = 3 vr .
The z displacements of the interface at the boundary due
to these different velocity components are Ao and Ar ,
so that A � Ao 1 Ar . The linearization of the Navier-
Stokes equations for the bulk of the phases implies
≠tv � =2v which leads to the following relation for the
spectral parameters:

n � �q2 2 k2� � k2� y2 2 1� , (2)
with y � q�k. The linear dynamics of the irrotational
mode is dictated only by the local pressure so that ≠tvo �
=p. Therefore, at the interface n2Ao � kp, since the
spatial dependence for the pressure has the form p �
cos�kx�e2kz . The continuity equations of the velocity
fields across the interface imply the relation yAr � Ao ,
so that A � Ao�1 2 y21�. Finally, the local curvature of
the interface produces a jump in the pressure across the in-
terface, Dp � 2�1�2�k2A, from which, after eliminating
the pressure amplitude, we obtain n2 � 2k3�1 2 y21�.
From this last relation, together with Eq. (2), we reach the
main result in the form of a single algebraic equation for
the ratio y,

y4 1 y3 2 y2 2 y 1
1
k

� 0 . (3)

From the analysis of the solutions of this equation, it is
found that the system is stable for every wavelength (these
systems can be unstable only in the presence of gravity
and when the densities are different). The stability of
the system is apparently disappointing for the purposes
of unstable, explosive behavior, or for structure creation.
For the problem of coalescing fluids, however, the stable
modes contain the crucial information, and it is necessary
to look at the asymptotic limits implied by these relations.

There are two scaling limits encoded in Eq. (3). First we
can consider short wavelengths for which k21 ! 0, which
due to our choice of units is also equivalent to the viscous
regime of the system, or the early stages of growth. The
relevant solutions of the equation can be expressed as a
power series in k21, y � k21 2 k22 1 . . . . This implies
that to leading order q � 1 and n � 2k. In this regime,
the decay time t � 21�n scales linearly with the wave-
length of the perturbation. This result is the linear analysis
expression of the scaling limit proposed by Siggia [8] for
the early stages of the growth, and has also been implicitly
confirmed by the 2D analysis of San Miguel et al. [12].
For long times after the process of coarsening has started
the only surviving modes have long wavelengths, k ! 0,
which corresponds to approaching the inviscid limit. In
this case the solutions of the characteristic equations are
complex, and can be presented as a Laurent series in k1�4:

y �
1 1 i
21�2 k21�4 2

1
4

1 . . . , (4)

so that, to leading order

q �
1 1 i
21�2 k3�4, (5)

n � iv 2 t21 � ik3�2 2 221�2k7�4. (6)

The leading term of the decay period is complex which im-
plies oscillatory behavior. This is to be expected since the
limit k21 ! ` is also equivalent to the limit of zero vis-
cosity, in which the system does not dissipate energy and
simply oscillates. The waves can decay only by restoring
a small amount of viscosity. A naive dimensional analysis
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of the Navier-Stokes equations for this problem suggests
the exponents of 1 and 2�3 for the growth rate of the
system. The first exponent has already been shown to
correspond to the early times or viscous regime. The
last exponent, however, cannot refer to the growth of the
system and provides only the scaling for the asymptotic
oscillatory frequency, as is well known in the literature of
capillary waves [16]. The next leading order analysis gives
rise then to the 1�a � 7�4 exponent, from which follows
the power law growth rate

L � t4�7. (7)

It is also important to note that in both limits the region
of viscous dissipation for the perturbation of wavelength
L extends not a distance L into the bulk of the fluid, but
rather to a different length scale Ld � q21, with asymp-
totic behavior Ld � L0 � 1 and Ld � L3�4, in the vis-
cous and inertial regimes, respectively. The results thus
obtained are also valid in two dimensions since no real use
was made of the dimensionality of the system.

The analysis of spherical shapes was performed by
Miller and Scriven [15] who considered the fluctuations of
a drop immersed in a second fluid. The results are similar
to the flat case, showing that the sphere is always stable,
and that in the limit of low viscosity perturbations decay
in the form of damped oscillations. For the spherical
droplet the deformations are decomposed into spherical
harmonics, instead of Fourier waves. The first order in
the real and imaginary parts of the complex decay rate for
the lth wave are given in the inertial limit by

n � v�l� �iR23�2 2 225�2�2l 1 1�2v�l�21�2R27�4� ,
(8)

where R is the radius of the drop and v�l� � �l�l2 2

1� �l 1 1���2l 1 1��1�2. Clearly this case satisfies the
same scaling relations obtained for the flat interface. For
the case of coalescence of two touching droplets into a
larger one it is easy to see that the process can be ap-
proximated by considering the two droplet state as a de-
formation of the final droplet with a large component in
the l � 2, quadrupolar mode. Note that in that case the
precise inverse decay time is given by t21 � 2Ren �
31�257�4229�4R7�4, and thus it can be expected that in a fit
to a power law from physical or computational data of the
form R � a�t 2 t0�a , the precoefficient a takes values of
order 1.

While the deformations from spherical or planar ge-
ometries obey the asymptotic limits given by Eqs. (6) and
(8) the average size of the domains will reflect the 4�7
power law only when the wavelengths and amplitudes
that are being relaxed correspond to the size of the sys-
tem, i.e., when the growth is driven by the coalescing of
similarly sized domains. Most of the information pro-
duced by the linear approximation can be locally tested by
means of time dependent correlation functions G�k, v� �
�r�k, v�r�k, v��, even when the state of the system does
not belong to a series of self-similar conformations.
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It has been argued by Grant and Elder [10] that as the
system grows it generates ever larger length scales and ve-
locity fields for which the Reynolds number, which in this
case appears to be Re � L2�T � L1�4, will indicate tur-
bulent behavior. Typically, the Reynolds number predicts
turbulent behavior in flows with an externally imposed ve-
locity. While instantaneously the system can be always
considered as such, the amount of energy available is al-
ways decaying and there is no external source to replace
it. Only a fraction of the energy available to the system
can be eventually transmitted by means of the turbulent
cascade towards smaller scales, leading to the local de-
struction of the sharp interface. In the coalescence of two
large domains at large Reynolds numbers, it is possible
that the final state is composed of, for example, one large
spherical domain, with satellite droplets that had been ex-
pelled from or penetrated from the external phase into the
final drop. While the largest scale of the system might
still be growing, the creation of the smaller stable struc-
tures can slow down the growth rate. It is not clear, how-
ever, if the slowing down is sufficient to imply the strict
bound a # 1�2. One way to further study this issue is, for
example, to investigate the locus of large vortex stretch-
ing fields that might occur in specific geometries relevant
to the problem, such as domains with large quadrupolar
deformations near the inviscid limit. The localization of
possible turbulent structures is not a trivial issue since in
the problem at hand there is not one single pair of length
and time scales, and indeed, we can form a Reynolds
number based in the dissipation length and the oscillatory
frequency Re � vL2

d � L23�2�L3�4�2 � 1 that is always
bounded. It is also possible that the turbulent mixing takes
place away from the interface which is then not destroyed.
A recent argument by Kendon [11] also shows that differ-
ent length scales can appear in the inviscid limit and that
the largest scale in the system is not equal to the turbu-
lent dissipation scale. The scaling arguments of Kendon
assume, however, that all quantities are isotropically dis-
tributed, while in our approach all quantities are tied to a
local frame set by the sharp interface and there are different
dominant scales in the directions transversal and parallel
to the surface. Finally, we note that even if the a # 1�2
bound is correct for the 3D problem, turbulence is not a
2D phenomena, and the a � 4�7 exponent should apply
to physical systems and simulations for which effectively
the dimensionality of the space is D � 2.

The conditions for the coalescence of domains are also
different depending on the dimensionality of the system.
In 3D a tubular structure is unstable [8], and this might
hinder the creation of larger structures since the system
might be trapped in a state that consists of isolated domains
formed by breakup of connecting tubes and relax into a
state of many disconnected droplets in the matrix of the
second component. In 2D, tubular structures are stable, as
shown by San Miguel et al. [12], and this analysis has been
interpreted as preventing the growth of the system. From
our point of view, however, the fact that the oscillations on
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the tube do not grow simply implies that the tube retains
its shape until the regions it connects are joined, or until it
is dynamically broken by the flow. It is important also to
note that the tube structures, if unstable, disappear rather
quickly at the beginning of the hydrodynamic flow. More
precisely, while these modes indirectly determine the final
state of the system, including the maximum size of the
domains that can be formed, they do not modify the rate
at which the final size is reached. Finally, we should point
out that, upon reaching the maximum size allowed by pure
hydrodynamical growth, coarsening may continue either
by Brownian motion of droplets [3] or by the diffusional
Lifshitz-Slyozov process [17].

Most of the numerical and experimental work to mea-
sure a possible power law in the growth of a system has
been analyzed by comparing the data against the two, so far
believed, more likely candidates, the power laws 1 and 2�3.
The late time asymptotics have been consistently shown to
be not 1, but the reduced amount of data does not pro-
vide a definitive measurement. The most favorable com-
parison of numerical data with the predictions presented
here comes from 2D simulations in which the best fit for
the late stages exponent was measured to be between 0.55
and 0.6 [7].

Since so much work in the field has been done by means
of simple dimensional analysis, it is interesting to derive
the main result for the inertial regime presented here with
such arguments. First, it is clear that the comparison of the
density of kinetic energy 1

2v2, and surface energy density
proportional to the interface area per volume A�L3, leads
to the relation v2L2 � L21, or v � L23�2. Next, the dis-
sipation length Ld is set by matching the frictional forces
created by longitudinal stretching ≠2

zyz , with the typical in-
ertial term ≠tyz in the dissipative layer so that L22

d � v �
L23�2, and Ld � L3�4. By incompressibility, the typical
values of the velocities tangential and normal to interfaces
are related by yxLd � yyL, so that the typical rate of en-
ergy dissipation by shear is yy≠2

yyx � L21
d L21y2

y , which
should be comparable to the leading term for the kinetic en-
ergy decay rate ≠ty

2
y � t21y2

y , and so t � LLd � L7�4,
or as expected, L � t4�7. This rather informal derivation
of the exponent can be shown to be right only by making a
precise parallel of the steps taken in it with those involved
in the linear analysis. More importantly, besides being an
argument for the a � 4�7 exponent, this derivation shows
the dangers implicit in the naive scaling analysis that has
often been invoked to justify a � 2�3.
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