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Influence of Four-Wave Mixing and Walk-Off on the Self-Focusing of Coupled Waves
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Four-wave mixing and walk-off between two optical beams are investigated for focusing Kerr media.
It is shown that four-wave mixing reinforces the self-focusing of mutually trapped waves by lowering
their power threshold for collapse, only when their phase mismatch is small. On the contrary, walk-off
inhibits the collapse by detrapping the beams, whose partial centroids experience nonlinear oscillations.
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Self-trapping of intense electromagnetic waves in
nonlinear media has inspired interest since the earliest
days of nonlinear optics [1]. For a focusing Kerr medium,
this process is often described by a �1 1 1�-dimensional
nonlinear Schrödinger equation (NLS), when, for instance,
optical pulses only undergo anomalous group-velocity
dispersion (GVD), while their transverse diffraction is
neglected. Theoretical developments based on this model
rapidly increased due to the possibility of making two
wave components couple nonlinearly and propagate as
mutually trapped solitonlike beams [2–4]. However, these
“vector” solitons were detected only recently in experi-
ments [3], partly because of the difficulty in overcoming
parametric four-wave mixing (FWM) processes which be-
come relevant when the two orthogonal polarizations are
not incoherently coupled [5]. Besides FWM, they, more-
over, experience linear convection, termed as “walk-off,”
which can be attached either to the half-difference of their
group velocity in birefringent media [4,6], or to the angle
between the transverse and carrier wave vectors in, e.g.,
biased photorefractive crystals [7].

In the previous literature, only one-dimensional disper-
sion was considered, and the interaction patterns between
two partial pulses were analyzed in terms of stable solitons
keeping a fixed sech-shape [5,6]. Nonetheless, the un-
derlying assumption that the soliton components preserve
their shape while propagating does not hold at higher
dimensions. It is indeed well-known that NLS solutions
are unstable, by spreading out or self-focusing until col-
lapse, when transverse diffraction is no longer disregarded
and enters (D 1 1)-dimensional equations with a number
of spatiotemporal dimensions D at least equal to 2 [8].
High-power pulses then sharply increase in amplitude and
suffer destructive modulations, which significantly affect
their mutual interactions [9]. Even if the collapse sin-
gularity is ultimately arrested by saturation mechanisms,
the dynamics preceding it is important for understanding
this growth stage, which justifies studying the self-
focusing of nonlinear waves when FWM and walk-off
cannot be ignored. In this Letter, the influence of both
these effects is investigated from (D 1 1)-dimensional
coupled NLS equations, with emphasis on the potential
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modifications of the power threshold for collapse when
D � 2. By means of analytical estimates and numerical
verifications, we show that FWM contributes to self-
focusing by lowering this threshold for pulses with small
phase mismatch only, whereas walk-off acts against the
collapse by inducing oscillations in the wave trajectories.

We consider the slowly-varying envelopes u1��r , z� and
u2��r , z� of two waves copropagating along the z axis of a
Kerr medium. Here �r refers to the vector of a generalized
D-dimensional transverse diffraction plane, which can also
include a retarded time variable when anomalous GVD
is retained. The waves undergo walk-off and FWM as
described by the generic model [3–6]
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where � means complex conjugate, �d1 � 2 �d2 � �d, and
b1 � 2b2 � b. In Eq. (1), standard notations have been
used. In particular, the second term describes walk-off
effects, the third term accounts for the mismatch in wave
numbers between the components, and the last term repre-
sents FWM. The constants A and B are positive, and they
measure the strength of the nonlinear coupling between
the two waves. In isotropic media, their values satisfy
A 1 B � 1 when u1 and u2 represent two orthogonal
polarizations of a vector field [4], while they are linked
by A � 2B � 2 for two copropagating beams with scalar
amplitudes u1 and u2. This model applies, for example,
to media as rubidium vapors [10] and CS2 liquid [11],
for which, by operating near resonance, the nonlinear-
ity can efficiently couple two beams. For Eq. (1), the
total power P � P1 1 P2 � ku1k
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conserved, and it keeps invariant each individual power
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2 when B � 0 only. For notational conve-

nience, we make use of the standard Lp norms, kfk
p
p �R

jfjp d �r , where
R

d �r denotes an integration over the
D-dimensional transverse space. Equations (1) also
conserve the Hamiltonian
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is the nonlinear potential related to the Kerr and FWM
contributions. Furthermore, we can derive a virial identity
describing the evolution of the total mean square radius of
both waves along z. This relation governs the second-order
z derivative of the integral
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which involves the total center of mass ��r� �
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forward procedure [9], the virial identity is found to read
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with d2
n � j �dnj

2. Here, �M0 denotes the conserved total
momentum. When collapse develops, the integral I �z�
vanishes at a finite propagation distance, zc, implying
In � P21

n k��r 2 ��r��unk
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2 ! 0 as z ! zc. In this limit,

the gradient norms of un must blow up by virtue of the
inequality Pn # �4�D2�Ink

�=�unk
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wave amplitude diverge in turn. In NLS systems, such
a blowup generally takes place at propagation distances
shorter than zc [8], and it arises when the total power ex-
ceeds some threshold. For instance, when considering one
component in �2 1 1� dimensions, blowup can develop
only if P exceeds Pc � 11.7, which is close to the critical
power 4p fixing H � 0 for Gaussian beams [9,12]. In the
sequel, we determine the influence of FWM and walk-off
on self-focusing, separately.

(i) FWM without walk-off.—For the case B fi 0 and
�d � �0, the virial relation (4) can be bounded from above
when D $ 2 as follows
≠2
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where the strict equality applies to the case D � 2
only. Thus, a total collapse of the wave function, in
the sense I �z� ! 0, always occurs for D $ 2, when-
ever �H 1 jbjP� is negative. In �2 1 1� dimensions,
the threshold power for collapse can be estimated by
bounding the Hamiltonian from below with a combination
of Cauchy-Schwarz and Sobolev [kunk
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Since the left-hand side of Eq. (9) is finite, a wave collapse
with k �=�unk

2
2 ! 1` cannot occur when the individual

power of both components is below the threshold

P B
c � Pc��1 1 A 1 B� . (10)

Hence, Pn , P B
c is a sufficient condition for no collapse.

In terms of the conserved total power P, collapse is surely
avoided when P is below P B

c , but due to power trans-
fers between both components, the bound P , P B

c can
significantly underestimate the actual threshold for col-
lapse when B fi 0, as was observed in similar studies of
quadratic nonlinear media [13]. In spite of this, when
the two components are initially identical, Eq. (1) with
b � 0 reduces by symmetry to the single-wave NLS equa-
tion i≠zu 1 �=2

�u 1 �1 1 A 1 B� juj2u � 0 and power
transfers are eliminated. P B

c thus restores the exact thresh-
old power for collapse of each component and, there-
fore, P . 2P B

c can here yield a reasonably good estimate
of the exact collapse threshold for small mismatch val-
ues, provided that u1��r , 0� � u2��r , 0�. In this situation,
Eq. (10) shows that FWM lowers the power threshold for
collapse and strengthens the self-focusing dynamics, com-
pared with that of incoherently coupled waves (B � 0) [9].

By means of an iterative, radially symmetric, midpoint
Crank-Nicholson finite-difference scheme, we have per-
formed numerical simulations of Eq. (1) in �2 1 1� dimen-
sions employing the Gaussian initial condition:

un��r , 0� �
q

Pn�pD2 exp�2r2�2D2� , (11)

with waist D, which is representative of laser beam pro-
files currently used in experiments. The amplitude is
expressed as a function of Pn, which is the accessible
quantity conditioning the occurrence of collapse. Selecting
another shape as, e.g., a sech profile, should not qualita-
tively change the coming results. We used a resolution
of Dr � 1023 over the interval r � �220, 120	 and a
step size of Dz � 1023, which kept the relative devia-
tion of P from its initial value below 1024 over a distance
z � �0, 50	.

The solid line in Fig. 1 shows the collapse threshold
2P B

c versus the FWM coefficient B when P1 � P2 �
P�2 and D � 2. For b � 0, this threshold power agrees
with its numerical counterpart, since the dynamics is
entirely determined by symmetry from the single-wave
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FIG. 1. Collapse threshold power 2P B
c versus B for u1��r, 0� �

u2��r, 0� with A � 2 (solid line). The dotted line represents 2P 0
c .

The black and white marked points indicate the numerically cal-
culated collapse thresholds for b � 0 and b � 20, respectively.

NLS equation. For b fi 0, this symmetry reduction
does no longer apply, and the waves exchange power.
However, at large mismatches (b ¿ 1), the FWM terms
can merely be averaged out (B ! 0) from Eq. (1) after
applying the phase transform un ! un exp�2ibnz�, so
that power transfers disappear and the collapse threshold
is simply given by 2P 0

c , as confirmed by the white marked
points of Fig. 1. In contrast, a more intriguing behavior
appears for moderate values of b. For b ranking as
1 , b , 10, the two components were indeed observed
to diffract with no significant power exchange in the range
P , 2P 0

c . For P above 2P 0
c , they started to periodically

transfer their power between each other, which generated
strong resonances following several focusing/defocusing
cycles. Rapid oscillations in each partial power created
spiky resurgences in the wave dynamics, which made it
computationally difficult to determine an accurate collapse
threshold. Despite this, a nonzero b always counteracts
the self-focusing promoted at exact phase matching
�b � 0�, by increasing the power threshold for collapse.

(ii) Walk-off without FWM.—We now consider the op-
posite situation �d fi �0 and B � 0. As the nonlineari-
ties depend only on intensities, the phase mismatch plays
no role in the collapse dynamics and we, henceforth, set
bn � 0 in Eq. (1). In this case, Eqs. (1) preserve the
individual powers Pn and, for D $ 2, the virial integral
satisfies

≠2
zI # 8H�P 1 2d2 2 2j �Mdj2�P2, (12)

where the strict equality still concerns only D � 2. From
Eq. (12), we infer that collapse inevitably develops when
H 1 d2P�4 # 0. This requirement reflects the interplay
between the focusing nonlinearities in the invariant H and
the increase in d2 of the total mean-square radius due
to walk-off. As a result, the finite distance zd

c at which
I �z� tends to vanish in case of collapse is larger than the
collapse focus z0

c corresponding to �d � �0. Therefore, the
collapse dynamics should be delayed and possibly arrested
when �d fi �0.

Let us check this property with the �2 1 1�-dimensional
Gaussian beams (11). Without walk-off, these beams pos-
sess the Hamiltonian H � �P�D2� �1 2 P�Pth� with the
collapse threshold,
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where r � P1�P2. In the presence of walk-off, the esti-
mate (12) yields the effective critical power for collapse,

P d
c � Pth
1 1 d2D2r��1 1 r�2� , (14)

which increases with the walk-off length d. Figure 2 shows
this critical power for equal waves with P1 � P2. The
threshold (14) is associated with a total collapse taking
place at the center ��r� � �0 and it raises with d, which is
confirmed numerically. At a given power, walk-off is thus
able to delay and even arrest such a collapse, as can be
guessed from the virial expression I �z� � �4z2�D2Pth� 3

�P d
c 2 P� 1 D2.
The agreement between the theoretical estimate (14) and

the numerical simulations is reasonably good for small d

values. For large d, Fig. 3 displays that walk-off signifi-
cantly competes with the collapse by modifying the tra-
jectories of both components in the transverse plane and
by detrapping them. The centroids of the components are
then shifted from ��r� � �0 and further fuse again at the ori-
gin, where collapse occurs [Fig. 3(a)]. This explains the
discrepancies in Fig. 2 between the true collapse threshold
and Pd

c for a total collapse on the center. Alternatively,
when the two waves contain enough power for promot-
ing individual collapses �P1 � P2 . 4p�, walk-off can
make them separate from each other and collapse on their
own center of mass, far away from the origin [Fig. 3(b)].
In this case, Eq. (12) emphasizes that walk-off becomes
important whenever jHj ø d2P�4, which yields a bound
for d, namely, d . �2�D�

p
P�Pth 2 1, above which the

two components can collapse separately with individual
mean-square radii tending to zero. This results in a satu-
ration plateau at P � 8p, towards which the collapse
threshold saturates from d . 1. Conversely, in the diffrac-
tion regime where collapse does not occur, the two compo-
nents can undergo one or more crossings before decaying
into noise, or continue to walk off away from each other
while they both decouple and disperse.

To understand the motion of the individual centers of
mass, ��rn� �z� � P21

n

R
�rjunj

2 d �r , we multiply Eq. (1) by

FIG. 2. Collapse threshold versus d � dx�dy � 0� for equal
waves with A � 1. The solid curve, where error bars have been
specified for the sake of accuracy, represents the numerical result
for P1 � P2 and D � 2. The dotted lines correspond to the
analytical predictions Pth�1 1 d2�, 8p, and Pth � 4p.
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FIG. 3. Amplitudes and wave centroids subject to walk-off for
(a) P � 16 with d � 0.3 (solid line), d � 0.7 (dotted), d �
0.8 (dashed), d � 1.0 (dash-dotted), and (b) P � 40 with d �
1.0 (solid), d � 1.3 (dotted), d � 1.6 (dashed), d � 3.0 (dash-
dotted).
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n� and combine the results to derive
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Z
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where dz��rn� �0� � �dn. The integral in (15) measures
the flux induced on the nth wave by its neighbor, which
can make ��rn� periodically displace to a fixed point
��r 0

n �, then go back to the center. For equal components
modeled by Gaussians junj

2 � �P�2pD2�e2j�r2��rn�j2�D2

located symmetrically from the origin, Eq. (15) re-
duces to d2

z ��rn� 1 �AP�pD4� ��rn�e22�rn�2�D2
� 0 and

��rn� has indeed a harmonic motion, which is damped
in collapse regimes [D�z� ! 0] and relaxes otherwise
[D�z� ! 1`]. Along one arch of oscillation, we can
moreover suppose that the waves keep a fixed width D,
so that the same equation provides the relation linking
dn to the maximal displacement of the beam centroid:
�r0

n� �
D
p

2

p
ln�1 2 2pD2d2

n�AP�21. Hence, the con-
straint that oscillations develop only if �r0

n� remains finite
imposes a critical value to the walk-off length, namely,
d2

n # d2
c � AP�2pD2. This critical value, below which

both waves are reflected back to the origin, can also
be estimated by considering two beams launched in
the medium at angles u0 and 2u0 with respect to z,
such as dn � 2n0 tanu0. By following the ray trajectory
associated with one beam, geometrical optics predicts
that this ray experiences a total internal reflection if u0
satisfies cosu0 � n0��n0 1 n�0�	, where n�0� and n0
denote the values of the refractive index on the axis and
at infinity, respectively. This relation then expresses as
tan2u0 � I�n2

0, where I is the light intensity at center.
For two beams symmetrically displaced from the origin,
I is given mainly by the interaction part of H, i.e.,
Hint�P � AP�8pD2, which thus restores dc.
In conclusion, we have shown that in Kerr media FWM
lowers the threshold power for collapse of two coupled
waves, when they are close to exact phase matching only.
The resulting enhancement of self-focusing, however,
ceases at moderate mismatch values, for which the waves
undergo sharp resonances. On the other hand, walk-off de-
lays the self-focusing by altering the beam trajectories. For
comparison, two weakly separated �1 1 1�-dimensional
solitons in birefringent fibers [6] can either bounce back
and forth while forming a trapped state, or separate
by developing nonlinear oscillations, whenever their
amplitude is above or below a d-dependent threshold. At
higher dimension, analogous behaviors also characterize
high-power pulses, whose components can either mutually
attract or separate with walk-off. However, the self-
focusing dynamics offers a richer variety of interaction
regimes, among which two coupled components, being
initially superimposed, can split before fusing or reversely
collapse after splitting. Finally, our analysis suggests
that, in saturable media, high-dimensional beams should
still be able to coalesce into a robust light bullet, which
may be desirable for optical switching applications. In
this scope, our results could be experimentally verified
in nonlinear media served by properly designed AlGaAs
waveguides [3] and atom vapors [10], where picosecond
pulses can produce strong nonlinear interactions with an
efficient Kerr response and weak phase mismatches.
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