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Experimental Evidence of Coherence Resonance in an Optical System
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Experimental evidence of coherence resonance in an optical system is reported. We show that the
regularity of the excitable pulses in the intensity of a laser diode with optical feedback increases when
adding noise, up to an optimal value of the noise strength. Both phase and amplitude fluctuations of
the pulses play a relevant role in the dynamics of the system. We introduce the joint entropy of the two
variables to generalize the indicator of coherence, and we put in evidence the mechanism of destruction

of the excitable orbit after the resonance.

PACS numbers. 42.65.5f, 05.40.Ca, 42.55.—f

Noise is usualy perceived as a limiting factor for dy-
namical systems. Indeed, in the largest variety of devices,
the increase of the noise amplitude leads to a degradation
of the output signal. In nonlinear systems this is not nec-
essarily true; it has been shown that a finite amount of
noise may induce a dynamical state which is, according to
some indicator, more “ordered.” Examples of such behav-
ior are, for instance, the enhancement of the decay time of
a metastable state (noise enhanced stahility) [1], the syn-
chronization with a weak periodic input signal (stochastic
resonance) [2], and the formation of convective structures
in spatially extended systems (noise-sustained structures)
[3]. The occurrence of noise-ordered behaviors is of pri-
mary importance not only in Physics but in amost all real,
nonisolated systems where the environment acts as a ther-
mal bath.

Recently, Pikovsky and Kurths studied in Ref. [4] the
effect of noise in the Fitz Hugh—Nagumo model of an au-
tonomous excitable oscillator. They showed that the fluctu-
ations of the time between successive excitable pulses are
minimized for a well-defined amount of the input noise.
They named such a behavior coherence resonance. Ex-
citable systemsarerelevant in almost every field of science
[5], including chemistry (Belousov-Zabotinskii reaction),
biology (cardiac tissue, neurons), and physics (liquid crys-
tals, optical systems). The physical meaning of coherence
resonance can be understood by considering the features
of excitable systems, namely, the pulse firing occurs only
when a perturbation overcomes a certain (nonzero) thresh-
old and thereafter the response of the system is almost in-
dependent of the size of the perturbation itself (see, e.g.,
Ref. [6]). The time between consecutive pulses T can be
decomposed into an activation time ¢,, which is the time
required for the system to escape from the quiescent state,
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plus arefractory time ¢,, which represents the time neces-
sary for the system to return to the quiescent state after a
departure. Therefore, ¢, is atime fixed by the dynamical
structure of the system, while ¢, depends on the pertur-
bation. This renders the role of noise in the dynamics of
an excitable medium highly nontrivial: excitable pulses
can be noise induced if the noise amplitude in the sys-
tem is strong enough. When the firing process is initiated
by noise, the statistical properties of the time ¢, follow
Kramer's law [7,8]. For increasing noise amplitude, the
average value of r, decreases until it is negligible com-
pared to 7,, while the orbit corresponding to the excitable
pulseis negligibly affected. Asaconsequence, the pulsing
becomes almost periodic with T = ¢, and the coherence of
the system has a maximum. Further increase of the noise
amplitude induces the deformation of the orbit of the ex-
citable pulses and eventually the dynamicsis totaly ruled
by the noise. We stress that, at the maximum of coherence,
the period of the signal is determined by an interna time
scale and not by an external modulation as in stochastic
resonance.

In this paper, we present an experimenta investiga
tion of the effect of noise in an excitable optica system,
namely, a semiconductor laser with optical feedback [8,9].
Changing the amount of noise, and choosing the adequate
indicators, we report experimental evidence of coherence
resonance.

We consider [9] a semiconductor laser subject to optical
feedback from an external mirror placed 36 cm away. The
optical feedback reduces the laser threshold by 12%. The
laser current is set at 1% above the solitary laser threshold,
and to this cw current we superpose an €electrical, broad-
band (>1 GHz), Gaussian noise whose rms amplitude can
be externally controlled. The laser output is detected by
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FIG. 1. Temporal behavior of the laser intensity for increasing
input noise amplitude. From top to bottom: noise = —60.8 dBm/
MHz (a), —52.5 dBm/MHz (b), and —44.3 dBm/MHz (c). The
horizontal scaleis 100 ns/div. The vertical scale is the same for
the three plots.

a fast avalanche photodiode (2 GHz bandwidth) and a
LeCroy digital oscilloscope (500 MHz bandwidth). A
DC-100 MHz amplifier allows selection of the frequency
range of interest. It is worth noting that filtering the sig-
na at 100 MHz alows us to monitor the excitable pulses
without the details introduced by faster time scales. The
pulse statistics are obtained from intensity traces contain-
ing several thousands of excitable pulses.

In the absence of added noise, the output intensity is
constant in time. As the noise is introduced in the sys-
tem, we observe the appearance of excitable pulses, ran-
domly distributed in time (Fig. 1a). Increasing the amount
of noise, the pulse rate increases, until the signal becomes
amost periodic (Fig. 1b). For higher noise the signal be-
comes irregular (Fig. 1c). This behavior is confirmed by
the power spectra of the laser intensity shown in Fig. 2,
since the spectrum of the trace in Fig. 1b exhibits a peak
narrower than those in the power spectra of traces Figs. 1la
and 1c. Therefore, the behavior of the system is more
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FIG. 2. Power spectrum of each of thetracesin Fig. 1. Dashed
line: trace (&); solid line: trace (b); and dotted line: trace (c).

regular around some definite noise level, as expected from
coherence resonance.

Following Ref. [4], we study the behavior of thetimein-
terval between pulses T' using the indicator Ry, defined as
the standard deviation of the scaled variable 8 = T /(T).
Inthe case of aperfectly periodic signal, R, would beiden-
tically zero. In Fig. 3weplot Ry asafunction of the noise
amplitude. We define the pulse time as the instant when
the signal crosses, with negative slope, a fixed threshold
value corresponding to 80% of the amplitude of the pulses
shown in Fig. 1a. Asnoiseisincreased from its minimum
value; Ry reaches a minimum for ¢ = £, and increases
afterwards. The minimum is clearly observable for awide
range of threshold choices; the particular threshold value
affects only how fast Ry increases for noise levels above
Eopt, but it does not modify the statistics for noise levels
below this optimum value. Thisisclear evidence of coher-
ence resonance, since near a particular level of input noise
we find maximum regularity of the pulse train.

However, it should be noted that there are, in genera,
two different ways to initiate the degradation of the
coherence of aspiking signal. In the first place, noise may
induce a large jitter of the time between spikes but leave
their amplitude ailmost unchanged. Another possibility is
that large pulse amplitude fluctuations develop as induced
by noise. In fact, a simple qualitative analysis of the signal
shown in Fig. 1 reveds that, for & > &5, noise strongly
affects not only the time T between pulses, but also the
pulse amplitude A. Thisexplainswhy the choice of thresh-
old value affects Ry for large noiselevels, but it also allows
us to explore the mechanisms of degradation of coherence
in our system, since deeper insight into the breaking of
regularity can be achieved by separating pulse timing
(phase) from pulse amplitude.

We define anew indicator R,, corresponding to the nor-
malized pulse amplitude & = A/{A), and we plot it in
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FIG. 3. Ry as a function of the input noise amplitude. The
statistics is performed on pulses whose amplitude cross, with
negative slope, a fixed threshold value of 80%, the average
amplitude of the pulses shown in Fig. la.
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FIG. 4. Ry (filled circles) and R, (empty circles) as a function
of the input noise amplitude. The statistics is performed on
pulses whose amplitude cross, with negative slope, a threshold
value of 50% of the average amplitude of the pulses calculated
for each noise level.

Fig. 4 together with Ry as a function of noise level. In
order to consider all excitable pulses even for noise levels
such that the pulse amplitudes are strongly affected by
noise, the threshold value for each noise level has been
taken as 50% of the average signdl, i.e., it is changing for
different noise levels. In this way, even pulses with rela-
tively small amplitude are considered in the statistics, and
we achieve areal separation of phase and amplitude fluc-
tuations of the pulses. In Fig. 3, the same threshold value
was considered for al noise levels, thus pulse amplitude
fluctuations were translated into time fluctuations that led
to an increase in Ry for noise levels above &,,. As can
be seen in Fig. 4, with the new choice of threshold, Ry
isinitially decreasing and finally becomes almost constant
for large noise levels. R, exhibits the opposite behavior:
initially it is amost constant, but increases steadily when
Ry becomes nearly constant.

The above results indicate that coherence is degraded
more by increasing fluctuations of the pulse amplitudes A
than by jitter in the pulse timing. Further confirmation
of this mechanism is achieved by considering the joint
statistics of the two variables @ and 6. We evauate the
joint probability distribution P(#, @) from experimental
data (Fig. 5). For low noise (Fig. 5a), we observe large
tempora fluctuations, but quite a uniform distribution of
the pulse amplitudes. By increasing the noise (Figs. 5b and
5¢), the temporal spread is strongly reduced, but there is
a large increase of the fluctuations in « for low temporal
separation T, indicating that closer pulses exhibit larger
amplitude fluctuations.

A quantitative assessment of the above statement is pro-
vided by considering the entropy

H=-> PlogP, (1)

which is a measure of the degree of disorder in the system
(see, e.g., Refs. [10,11], and references therein).
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FIG. 5. Distributions of the (8, «) values. The coordinates of
each point are rescaled to the corresponding averages. The plots
correspond, from top to bottom, to the measurements reported
in Fig. 1.

For two variables it is found that H(x,y) = H(x) +
H(y), where the equality holds if, and only if, x and y are
independent variables. In such a case, and if the variables
are Gaussian, it is found that [11]

explH (x,y)] = 2me X R(R,. 2

The quantity H(x, y) then measures the spreading of the
(bidimensional) probability distribution and, therefore, it
is a meaningful way of describing the total amount of
fluctuations of the system. Therefore, the joint entropy
H(6, a) isageneraized indicator of coherence resonance
that takes into account the fluctuations in both time and
amplitude of the excitable pulses. We plot H(6, «) as a
function of the noise added into the systemin Fig. 6. It can
be seen that the minimum appears again, thus evidencing
that there is a noise level that yields maximum regularity
in the pulse train.

Finaly, it is worth mentioning that, although H (6, «)
isinitially decreasing with noise level, the entropy for the
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FIG. 6. Joint entropy of the excitable pulses, H(6,a) as a
function of the input noise level.
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whole data series is monotonically increasing for increas-
ing noise levels. Only the entropy corresponding to the
pulse train reveals the coherence resonance effect.

In conclusion, we have shown experimentaly the ex-
istence of coherence resonance in an optical system. We
characterized it by using different statistical indicators: the
normalized standard deviation of the time intervals be-
tween pulses and the joint entropy of the pulse amplitudes
and pulse time interval distributions. We are then able to
reveal the specific mechanism for which noise destroys the
coherence of the pulse train after the resonance.
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