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Baryon resonances with even and odd parity are collectively investigated from the viewpoint of chiral
symmetry (ChS). We propose a quartet scheme where D’s and N�’s with even and odd parity form
a chiral multiplet. This scheme gives parameter-free constraints on the baryon masses in the quartet,
which are consistent with observed masses with spin 1

2 , 3
2 , 5

2 . The scheme also gives selection rules in
the one-pion decay: The absence of the parity nonchanging decay N�1720� ! pD�1232� is a typical
example which should be confirmed experimentally to unravel the role of ChS in baryon resonances.

PACS numbers: 12.39.Fe, 14.20.Gk
Chiral symmetry (ChS) and its dynamical breaking in
quantum chromodynamics (QCD) are the key ingredients
in low energy hadron dynamics. For instance, all hadrons
can be classified in principle into some representation
of the chiral group SU�Nf�L 3 SU�Nf�R , and the in-
teractions among hadrons are strongly constrained by
this symmetry.

There are two ways to realize ChS in effective low-
energy Lagrangians: nonlinear and linear representations.
In the former, pions as Nambu-Goldstone (NG) bosons
play a crucial role, which has been extensively studied and
is summarized as the celebrated chiral perturbation theory
[1]. In the latter, scalar mesons are introduced to form
a linear chiral multiplet with the NG bosons. Although
such heavy mesons do not allow systematic low-energy
expansion, they are essential near the critical point of chiral
phase transition where both the scalars and NG bosons
behave as soft modes [2].

As for the baryons in the linear representation, the Gell-
Mann Lévy sigma model [3] is a first example where the
nucleon transforms linearly under both the vector and the
axial-vector transformations. DeTar and Kunihiro (DK)
[4] generalized the model so that N1 (the nucleon) and its
odd-parity partner N2 form a multiplet of the chiral group
[5]. A unique aspect of the DK model is that the even- and
the odd-parity nucleons can have nonvanishing mass even
in the Wigner phase without violating ChS.

In the DK construction, N6 are represented as a super-
position of N1 and N2 which are assigned to have oppo-
site axial charges with each other. Subsequently, this was
called the “mirror assignment” and distinguished from the
“naive assignment" where N1 and N2 have the same axial
change [6]: The two assignments are shown to have phe-
nomenologically distinguishable predictions [7].

The purpose of this Letter is to develop the idea of
the mirror assignment in baryon resonances with differ-
ent parity (P � 6� and different isospin (I �

1
2 , 3

2 ), and
to explore how ChS is realized in the excited baryons.
Achieving this purpose is tantamount to constructing a lin-
ear sigma model in which both D6’s and N�

6’s are incor-
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porated for a given spin sector. [Here we call N� (D) as
a resonance with I �

1
2 � 3

2 �, and the subscripts 6 denote
their parity.] Thus we shall arrive at proposing a quartet
scheme in which N�

1, N�
2, D1, and D2 form a chiral mul-

tiplet. It will be shown that this quartet scheme is consis-
tent with the observed baryon spectra without fine tuning
of the model parameters. We will also show some evi-
dence of this scheme in the decay pattern of the resonances.
Throughout the present Letter, we focus on Nf � 2, and
neglect the explicit breaking of ChS due to quark masses.

To make the argument explicit, let us start with D�1232�
(JP �

3
2

1) and its chiral partners. First of all, we need to
choose the representation of D under SU�2�L 3 SU�2�R .
The quark fields q � ql 1 qr belong to � 1

2 , 0� © �0, 1
2 �,

where the first and second numbers in the parentheses
refer to SU�2�L and SU�2�R representations, respectively.
Therefore, � 3

2 , 0� © �0, 3
2 � and �1, 1

2 � © � 1
2 , 1� are the two

candidates for D; both of them contain isospin I �
3
2

and are constructed from three quarks �� 1
2 , 0� © �0, 1

2 ��3

[8]. Here, we choose �1, 1
2 � © � 1

2 , 1� for D, because D

is known to be a strong resonance in the N-p system,
and N 3 p � �� 1

2 , 0� © �0, 1
2 �� 3 �� 1

2 , 1
2 �� does not con-

tain � 3
2 , 0� © �0, 3

2 �. In the quark basis, this represen-
tation may be schematically written as �1, 1

2 � © � 1
2 , 1� �

�qLqL�I�1qR © qL�qRqR�I�1 where Lorentz and color in-
dices are suppressed [9]. Note that �1, 1

2 � © � 1
2 , 1� contains

both I �
3
2 and I �

1
2 baryons, thus we utilize the latter

to incorporate N�. From now on, we do not consider the
quark structure of D and N�, and simply introduce ele-
mentary Rarita-Schwinger (RS) fields for constructing an
effective Lagrangian.

To accommodate the parity partners of the baryon
resonances, let us define c1 and c2 as two independent
J � 3

2 RS fields with even and odd parity, respec-
tively. The Lorentz index m � 0, . . . , 3 for the RS fields is
suppressed for brevity. We then define the chiral decompo-
sition: ci � cil 1 cir with g5cil,ir � 7cil,ir (i � 1, 2).
In the J �

3
2 chiral quartet, c1 and c2 are mixed to
© 2000 The American Physical Society
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form four resonances: D1�P33�, D2�D33�, N�
1�P13�,

and N�
2�D13�.

In the mirror assignment, c1l and c2r belong to �1, 1
2 �,

while c1r and c2l belong to � 1
2 , 1�, so that c1 and c2 have

opposite axial charge. Thus, these fields have three indices,
�c1,2�g

ab , with a, b, and g take 1 or 2. Here �ab� is the
index for I � 1 triplet and g for I �

1
2 doublet. Since c

is traceless for the triplet index �ab�, it is convenient to
introduce a component field �ci�A,g (A � 1, 2, 3 for triplet
and g � 1, 2 for doublet) as

�c1,2�g
ab �

X
A�1,2,3

�tA�ab�c1,2�A,g , (1)

where tA �A � 1, 2, 3� is the 2 3 2 Pauli matrix.
The transformation rules of ci under SU�2�L 3 SU�2�R

are then represented by

�tA�ab�c1l,2r�A,g ! �LtALy�ab�Rc1l,2r�A,g , (2)

�tA�ab�c2l,1r�A,g ! �RtARy�ab�Lc2l,1r �A,g , (3)

where L (R) corresponds to the SU�2�L ���SU�2�R��� rotation.
The meson field M � s 1 i �p ? �t belongs to � 1

2 , 1
2 � mul-

tiplet, and obeys the standard transformation rule, M !
LMRy.

Now let us construct the mass term and the Yukawa cou-
pling of ci with M. Here we consider only the simplest
interaction which has only single M without derivatives
as in the case of the Gell-Mann-Lévy and DeTar-Kunihiro
models. It can be shown that the chiral invariance under
Eqs. (2) and (3) together with parity and time-reversal in-
variance allow only three terms:

Lint � m0�c̄A
2 g5cA

1 2 c̄A
1 g5cA

2 �
1 ac̄A

1 tB�s 2 i �p ? �tg5�tAcB
1

1 bc̄A
2 tB�s 1 i �p ? �tg5�tAcB

2 , (4)

where m0, a, and b are free parameters not constrained by
ChS. These three parameters give strong constraints on the
masses and couplings of D’s and N�’s. The interaction
Eq. (4) for the �1, 1

2 � © � 1
2 , 1� chiral quartet is a natural

generalization of that for the � 1
2 , 0� © �0, 1

2 � chiral doublet
in [4]. Instead of working with the linear basis �s, �p�, one
can also adopt the nonlinear basis [M � r exp�ig5 �t ? �f�]
together with a suitable redefinition of the baryon fields
along the same line with the second reference in [7]. This
could be also a good starting point of the pion-baryon
phenomenology in the quartet scheme.

A shortcut to derive Eq. (4) is to use LMRy together
with the rotated fields in the right hand side of Eqs. (2)
and (3) and to look for combinations in which L and R
do not appear in the final expression. Since L and R are
independent transformations, the indices related to the left
(right) rotation must be always contracted with the left
(right) rotation. One of the chiral invariant mass terms,
for example, comes from the combination Tr��RtARy� 3
�RtBRy�� ��c̄A
1rLy� �Lc

B
2l��. Also, one of the Yukawa

terms is obtained from ��c̄A
1lR

y� �RtBRy� �RMyLy� 3

�LtALy� �Lc
B
1r ��.

As already mentioned, c
A,g
i contains both I �

3
2 field

Di,M �M �
3
2 , 1

2 , 2 1
2 , 2 3

2 � and I �
1
2 field N�

i,m �m �
1
2 , 2 1

2 � which are obtained by the following isospin decom-
position: c

A,g
i �

P
M�TA

3�2�gMDi,M 1
P

m�TA
1�2�gmN�

i,m

where the isospin projection matrices TA
3�2 and TA

1�2
are defined through the Clebsch-Gordan coefficients,
�TA

3�2�gM �
P

r ,g0�1r
1
2g0j

3
2M�eA

r x
g
g0 and �TA

1�2�gm �P
r ,g0�1r

1
2g0j

1
2m�eA

r x
g
g0 . �er are vectors relating the

A � �1, 2, 3� basis to r � �11, 0, 21� basis, and �xg0 re-
lates the g � �1, 2� basis to g0 � � 1

2 , 2 1
2 � basis [10]. Their

explicit forms are e1 � 21�
p

2�1, i, 0�, e0 � �0, 0, 1�,
e21 � 1�

p
2 �1, 2i, 0�, x1�2 � �1, 0�, x21�2 � �0, 1�.

With the invariant Lagrangian (4), we shall next show
its phenomenological consequences on the masses of D’s
and N�’s. After the spontaneously symmetry breaking
SU�2�L 3 SU�2�R ! SU�2�V due to the finite s conden-
sate �s� � s0 . 0, the mass term in Eq. (4) becomes

Lm � 2�D̄1, D̄2 �
µ

22as0 g5m0
2g5m0 22bs0

∂ µ
D1
D2

∂

2 �N̄�
1 , N̄�

2 �
µ

as0 g5m0
2g5m0 bs0

∂ µ
N�

1
N�

2

∂
. (5)

The physical bases D6 and N�
6 diagonalizing the mass

matrices are given byµ
D1

D2

∂
�

1
p

2 coshj

√
ej�2 g5e2j�2

g5e2j�2 2ej�2

! µ
D1
D2

∂
,

together with a similar formula for N�
6 with the re-

placement j ! h. The mixing angles j, h are
given by sinhj � 2�a 1 b�s0�m0 and sinhh � �a 1

b�s0��2m0�. These bases are chosen so that the masses of
D’s and N�’s are all reduced to the chiral-invariant mass
m0 . 0 when ChS is unbroken (s0 � 0).

Thus we finally reach the mass formula,

mD6
�

p
�a 1 b�2s2

0 1 m2
0 7 s0�a 2 b� , (6)

mN�
6

�

sµ
a 1 b

2

∂2

s
2
0 1 m2

0 6
s0

2
�a 2 b� . (7)

Equations (6) and (7) show that the spontaneous breaking
of ChS lifts the degeneracy between parity partners (D1 vs
D2, and N�

1 vs N�
2) and the degeneracy between isospin

states (D vs N�) simultaneously [11].
A remarkable consequence of our quartet scheme is the

following mass relations which hold irrespectively of the
choice of the parameters (m0, a, b):
(1) The ordering in parity doublet of N� is always opposite
to that of D:

sgn�mD1
2 mD2

� � 2sgn�mN�
1

2 mN�
2
� . (8)

(2) The mass difference between the two parity doublets
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is fixed:

1
2

�mD2
2 mD1

� � mN�
1

2 mN�
2
. (9)

(3) The averaged mass of the D parity-doublet is equal to
or heavier than that of N�:

1
2

�mD1
1 mD2

� $
1
2

�mN�
1

1 mN�
2
� . (10)

So far, we have considered only the case for J � 3
2 . How-

ever, all the arguments and the mass relations above hold
for the resonances with arbitrary spin as long as �1, 1

2 � ©
� 1

2 , 1� chiral multiplets are concerned.
For the candidate of the quartets in the real world, we

adopt the lightest baryons in each spin parity among the
established resonances with three or four stars in [12]. I �
J �

1
2 channel is, however, an exception since N�940�

is supposed to form a � 1
2 , 0� © �0, 1

2 � chiral doublet with
its parity partner which is either N�1535� or N�1650�, or
possibly their linear combination, in the mirror assignment
[6]. Therefore, we study two cases in J �

1
2 depending on

whether we take N�1535� (case 1) or N�1650� (case 2) as a
�1, 1

2 � © � 1
2 , 1� quartet member. In Fig. 1, the observed

resonances taken from [12] in the above criterion are shown
under the label “exp” for each spin sector.

The comparison between the mass relations in the quar-
tet scheme and the experimental data is shown in the first
three rows in Table I. Parameter free constraints (8) and
(9) are well satisfied by the observed masses. The con-
straint (10) is well satisfied in J �

1
2 and J �

5
2 sectors,

and is marginally satisfied in J �
3
2 .

If we have taken the so-called naive assignment where
c1l,2l belongs to �1, 1

2 �, and c1r ,2r belongs to � 1
2 , 1�, the

mass formula turns out to be the same with Eqs. (6) and
(7) with m0 � 0. This leads to a relation, mD6

� 2mN�
7
,

∆(1930)

N(1675)
∆(1620)

∆(1700)

N(1440)

N(1520)

N(1650)

N(1535)

N(1720)
N(1680)

∆(1232)

∆(1905)

∆(1910)

Spin 3
2

Spin 1
2

Spin 5
2

Case 1 Case 2

Exp.QS QS QS Exp.Exp.

1420

1565

1630

1900 1923

1624

1607

1466

1770

1320

1430

1660

1929

1907

1672

1683

FIG. 1. The quartet members with J �
1
2 , 3

2 , 5
2 . The right (left)

hand side for each spin is the observed (quartet scheme) masses.
The solid (dashed) lines denote the even (odd) parity baryons.
The reproduced masses in our scheme agree with the experi-
mental values within 10%.
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which is in contradiction to the observed spectra in our
criterion. This is why we have not adopted the naive as-
signment in this Letter.

Encouraged by the phenomenological success of the
parameter-free predictions of the mirror assignment, we
go one step further and determine the three parameters m0,
a, and b in each spin sector. For this purpose, we take the
four observed masses and s0 � fp � 93 MeV and use
the least squares fit. [For J � 3

2 , we adopt a � 2b to
satisfy the equality in Eq. (10).] Resultant parameters are
summarized in the last two rows of Table I. The baryon
masses in these parameters are also shown under the
label “QS” in Fig. 1. They agree with the experimental
data within 10%.

m0 	 1500 MeV for �1, 1
2 � © � 1

2 , 1� in Table I, which
we obtained irrespective of the spin, is considerably larger
than m0 � 270 MeV for � 1

2 , 0� © �0, 1
2 � [4]. Further in-

vestigation on the origin of m0 in QCD is necessary to
understand if these values as well as their difference have
physical implications. Also, it is to be studied whether the
baryonic excitations with finite mass m0 exist in the chiral
restored phase using, e.g., the lattice simulations.

Let us return to the discussion of the J �
3
2 quartet and

investigate the decay patterns by the single pion emission
obtained from Eq. (4). The interaction Lagrangian of p

and c6 with a � 2b � 1.2 is

L1p � �c̄A
1, c̄A

2�
µ

0 2a
a 0

∂
tB�i �p ? �t �tA

µ
cB

1

cB
2

∂
,

(11)

where c1 � 1
p

2
�c1 1 g5c2� and c2 � 1

p
2

�g5c1 2

c2�. The mixing angles read j � h � 0 due to
a 1 b � 0 (see Table I). L1p has only the off-diago-
nal components in parity space: Therefore the parity
nonchanging couplings such as pD6N�

6, pD6D6, and
pN�

6N�
6 are forbidden in the tree level of Eq. (11).

Observed one-pion decay patterns are qualitatively
consistent with the suppression of the pD1N�

1 coupling.
In fact, N1�1720� ! pD1�1232�, although its phase

TABLE I. Comparison between parameter free predictions of
the quartet scheme (QS) and the observed data. Case 1 and
case 2 in the J �

1
2 sector stand for the cases N�

2 � N�1535�
and N�

2 � N�1650�, respectively. The last two rows are the
parameters m0, a, b determined from the experimental inputs.

QS J �
1
2 J �

3
2 J �

5
2

Case 1 Case 2

sgn

√
mN�

1
2mN�

2

mD1 2mD2

!
– – – – –

mN�
1

2mN�
2

mD1 2mD2
2

1
2 20.33 20.72 20.43 20.2

mN�
1

1mN�
2

mD1 1mD2

#1 0.84 0.88 1.1 0.87

m0 (MeV) 1380 1460 1540 1590
�a, b� �5.2, 6.6� �4.4, 6.1� �1.2, 21.2� �5.8, 5.7�
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space is large enough, is insignificant, or has not been
shown to exist in the recent analysis of pN scattering am-
plitudes [13]. (The existence has been suggested in an old
analysis of pN ! ppN though [14].) On the other hand,
N2�1520� ! pD1�1232� and D2�1700� ! pD1�1232�
in the S-wave channel, which are not suppressed in
Eq. (11), have been seen with the partial decay rates
5% 12% and 25% 50%, respectively [12].

There exist some works investigating the spectrum and
decay of the exited baryons simultaneously: the con-
stituent quark model [15] and the collective string model
[16], in which D’s are in a different spin-flavor multiplet
from that of N�’s. Although the symmetry and dynamics
are totally different from ours, the parity nonchanging
decay N1�1720� ! pD1�1232� in these models is sup-
pressed by a factor 25 50 compared to the parity changing
decay D2�1700� ! pD1�1232�. The physical reason
behind this suppression and its relation to our approach is
not clear at the moment.

The suppression of pD6D6 and pN�
6N�

6 cannot
be checked in the decays, but empirical studies of the
pN ! ppN process [17] seem to suggest that the
pD1�1232�D1�1232� coupling is less than half
of the quark model prediction given by gpDD �
�4�5�gpNN [10].

For J �
1
2 , 5

2 sectors, similar analysis is not possible at
present, because of large uncertainties and/or the absence
of experimental data for relevant decays. More experimen-
tal data on the decays among the quartet shown in Fig. 1
would be quite helpful for future theoretical studies.

We note here that the selection rule discussed above
may in principle be modified by chiral invariant terms not
considered here, such as the terms containing derivatives as
well as multi-M fields. This is the situation similar to that
for gA of the nucleon in the linear sigma model, where the
simplest Yukawa coupling in the tree level gives gA � 1,
while the higher dimensional derivative coupling as well as
quantum corrections could shift it to 1.25 [18]. Therefore,
detailed studies with those terms should be also done in
the future.

In summary, we have investigated baryon resonances
with both parities from the viewpoint of chiral symme-
try. We have constructed a linear sigma model in which
D6’s and N�

6’s with a given spin are assigned to be a rep-
resentation �1, 1

2 � © � 1
2 , 1� of the chiral SU�2�L 3 SU�2�R

group. Adopting the mirror assignment for the axial charge
of baryons, we have arrived at the quartet scheme where
N�

1, N�
2, D1, and D2 form a chiral multiplet. We have

shown that the quartet scheme gives constraints not only
on the baryon masses but also their couplings; it turns out
that the constraints are consistent with the observed baryon
spectra. We have shown that experimental confirmation
of the absence of parity nonchanging decay in the J �

3
2

sector such as N1�1720� ! pD1�1232� together with the
measurement of the decay patterns in J �
1
2 , 5

2 sectors is
important to test the quartet scheme and to explore the role
of ChS in excited baryons.
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