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We predict new populations of trapped nonequatorial (“halo”) orbits of charged dust grains about
an arbitrary axisymmetric planet. Simple equilibrium and stability conditions are derived, revealing
dramatic differences between positively and negatively charged grains in prograde or retrograde orbits.
Implications for the Cassini mission to Saturn are discussed.

PACS numbers: 96.30.Wr, 45.50.Jf, 96.35.Kx
With the Cassini spacecraft on route to Saturn to per-
form detailed in situ measurements of charged dust grains,
it is important to understand the nonlinear dynamics of
their orbital motion [1–7]. We report here a complete
equilibrium and stability analysis for charged dust grains
of arbitrary position and velocity about an axisymmetric
planet. The results yield quantitative predictions concern-
ing the possible size and charge of dust grains reaching
the Cosmic Dust Analyzer (CDA) [8] aboard the Cassini
Orbiter. Stable halo orbits (those encircling the planet
above or below the equatorial plane) are found to be of
three types: positively charged grains in prograde orbits
at large orbital radius, retrograde orbits at any radius,
and prograde negatively charged grains at very high lat-
itudes. The results suggest that positively charged grains
in retrograde orbits are the most likely to be observed by
the CDA.

Our physical model and methodology closely parallel
those employed by Howard et al. [9]: Keplerian gravity,
corotating magnetic field (taken to be an aligned centered
dipole), and induced electric field. Planetary oblateness,
radiation pressure, and plasma drag are neglected. As we
shall see, the mixture of gravitational and electromagnetic
forces generates a very rich dynamical behavior, which
will be reported in detail elsewhere [10]. Equilibria are
found as the critical points of an effective potential Ue,
with local nonlinear (Lyapunov) stability boundaries given
by detD2Ue � 0. The critical points are given by the zeros
of a quintic polynomial in the radial coordinate r, whose
double zeros correspond to the zeros of detD2Ue, leading
to surprisingly simple explicit stability boundaries.

For a spherical dust grain of uniform density rm

�g�cm3�, radius am (microns), and a surface potential of
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We shall take rm � 1 g�cm3. Typical values of F for
Jupiter and Saturn lie in the range 220 V , F , 110 V
[11]. For a given planet and equilibrium radial position
r, stability depends on q�m alone, conveniently measured
by the parameter F̂ � F�a2

m, which we shall express
as a pure number. Since the potential is determined by
the ambient plasma, F̂ depends only on the grain radius
am. An upper bound on F̂ is thus a lower bound on am.
Roughly speaking, grains with am . 1 are gravity domi-
nated, while those with am , 1 are dominated by electro-
magnetic forces.

Equilibria.—Consider a dust grain of mass m and
charge q orbiting about an axisymmetric planet. As in
[9] the motion may be described in an inertial frame by
an effective potential, in Gaussian units and cylindrical
coordinates,
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where U�r, z� is the gravitational potential, C�r, z� is
the magnetic stream function, pf � mr2v 1 qC�c is
the conserved canonical momentum, v is the orbital fre-
quency, and V is the planetary rotation rate. Here we as-
sume Keplerian gravity, U � 2mm�r , with m � GMs,
r �

p
r2 1 z2, and a centered dipole field, for which

C � gr2�r3, where g � qB0R3
p�c measures the dipole

strength, with B0 the magnetic field on the planetary equa-
tor. Measuring distances in units of the planetary radius,
Rp , (2) becomes
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where vc � qB0�mc is the cyclotron frequency and vk �q
m�R3

p is the Kepler frequency, both evaluated on the

planetary equator, and now pf � r2v 1 vcr2�r3.
Equilibria �r0, z0� are given by the simultaneous solu-

tions of Ue
r � Ue

z � 0, which for z0 fi 0 reduce to
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3vc�v 2 V�r2 1 v2
kr2 � 0 , (5)

where pf has been eliminated in favor of v. It follows im-
mediately from (5) that the orbital frequency v fi V, i.e.,
nonequatorial synchronous orbits are impossible. Further-
more, we see that it is necessary that v , V for positive
charge and v . V for negative charge. Note that the lat-
ter inequalities also hold for equatorial orbits [9]; the new
fact of life is that exact synchronicity is unattainable for
nonequatorial orbits.

First suppose it is desired to know whether a stable
equilibrium orbit exists for some F̂ (and therefore vc) at
a specified location �r0, z0�. Eliminating vc between (4)
and (5) gives

v2 �
2v

2
k

3r
2
0r0

. (6)

Both signs of v are possible. The requisite value of F̂�vc�
(if it exists) is then given by

vc �
r3

0 v2

2�V 2 v�
. (7)

For positive charge this is automatically satisfied for nega-
tive (retrograde) v but demands v , V for positive (pro-
grade) v. For negative charge we need v . V . 0,
which excludes retrograde orbits. There are no retrograde
nonequatorial equilibria for negative charge; for positive
charge either sense is possible.

Now (7) can be written as a quadratic in v, similar to
that previously found for equatorial orbits:

r3
0 v2 1 2vc�v 2 V� � 0 . (8)

Thus, we can take the point of view that r0 and vc are
specified and seek conditions for an equilibrium some-
where on the sphere r � r0. The solutions of (8) are

r3
0 v � 2vc 6
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0 Vvc (9)

subject to the constraint r , r . Equation (6) then implies
v2 $ v�2 � 2v

2
k�3r3

0 , with corresponding vc given by
(7), which yields �v� . 0�

v2
k�3�V 1 v�� # vc # v2

k�3�V 2 v�� . (10)

Figure 1 shows these solutions for r0 � 2. For vc . 0
and jvj . v� there is a prograde/retrograde pair; for
22r3

0 V , vc , 0 there are no equilibria, and for
vc , 22r3

0 V there are two possible prograde equilibria.
Since v� , V there are no constraints on q�m. For
large q�m there are two asymptotic limits: v � V and
v � 2V 2 2vc�r3

0 .
Stability.—In general an equilibrium �r0, z0� is Lya-

punov stable if both detD2Ue . 0 and trD2Ue . 0 [12],
with stability boundaries given by detD2Ue � 0. Just as
for the equatorial equilibria we can generate a stability
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FIG. 1. Orbital frequencies v1,2 as functions of vc�vk for
r0 � 2.0. Equilibria do not exist on the dashed part of the
right-hand curve �q . 0�.

diagram with r0�Rp plotted vs vc�vk . The corresponding
values of r0 and z0 (if they exist) then follow from (6). As
a preliminary step, let us reduce the number of parame-
ters by rescaling r̂ � r�l, r̂ � r�l, with scale length
l � pf�g, which gives
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where we have introduced the dimensionless parameters
a � p3

f�mm2g and d � gV�mm. The equilibrium con-
ditions may then be reduced to the quintic

P5�r̃� � 2r̃5 2 9br̃4 1 12br̃3 1 br̃2 1 6b2 � 0 ,

(12)

where b � ad2, r̃ � r̂�d, and the corresponding r value
is given by

r̂2 �
d3�3b 1 r̃2�r̃3

3�b 1 r̃3�
. (13)

In general the quintic (12) has two positive real roots. In
order that one of these roots be physically realized it must
satisfy the constraint r̂ , r̂ .

Now observe that an instability invariably involves the
merging of two zeros of P5�r̃�. That is, P5�r̃� has a double
zero whenever detD2Ue � 0. Setting the discriminant of
P5�r̃� to zero yields b� � 5�8 1 13

p
3�36 � 1.250 463,

at which point r̃� � 3�2 1 5
p

3�6 � 2.943 38. From the
scale length

l �
g
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�
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r
2
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it follows that

r̃� �
2V

3v2 �v 1 vc�r3
0 � . (15)

Eliminating v between (15) and the quadratic (8) then
gives

r0 � �Avc�V�1�3, (16)
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FIG. 2. Stability diagram for (a) positive charge, (b) negative charge. For positive charge, prograde orbits are stable in the upper
triangular region; retrograde orbits are stable everywhere to the right of the curve labeled pf(retro). For negative charge only prograde
orbits can be stable. Equilibrium orbits appear on the curve v1 � v2, stabilizing (for r0 . 1.3Rs) upon crossing the curve labeled
sn�v1�.
where A � 2�5 1 3
p

3�, with corresponding orbital
frequency v � �2 2

p
3�V.

Figure 2(a) presents the stability boundaries in the
vc�vk 2 r0 plane. For the prograde branch halo orbits
are born on the curve marked pf(pro), where an equa-
torial orbit suffers a pitchfork bifurcation. Note that
this boundary has a vertical asymptote when d � 1�3.
For r0 . 3.83Rs this orbit is stable until it reaches the
curve labeled sn(pro), where it undergoes a saddle-node
bifurcation �b � b��; for r0 , 3.83Rs all equilibria are
unstable. A representative stable equilibrium is illustrated
in Fig. 3(a), which depicts level sets of Ue for r0 � 5 and
F̂ � 1200. In this case a rather complex set of global
bifurcations (reconnections) occur as F̂ is varied. The
planetary surface is drawn in as a circle of unit radius.
For the retrograde branch the behavior is much simpler.
Here halo orbits are born out of an equatorial pitchfork
bifurcation [curve pf(retro)] for all r0 and remain stable
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FIG. 3. Selected level sets of Ue for (a) prograde positive charge, with r0 � 5 and F̂ � 1200; (b) retrograde positive charge, with
r0 � 2 and F̂ � 800; and (c) prograde negative charge, with r0 � 1.381 and F̂ � 3000.
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ever after, i.e., nothing happens to them with increasing F̂.
A typical stable equilibrium for a point near the Cassini
Division, r0 � 2 and F̂ � 800, is depicted in Fig. 3(b).
As shown in [9], the equatorial stability boundaries (solid
curves) are given by the two branches of

r0 �
�6v2

c �1�3

�v2
k 2 3Vvc�2�3

. (17)

For negatively charged grains a similar analysis yields
the stability diagram shown in Fig. 2(b). Both modes ap-
pear as unstable saddles on the same curve, given by the
vanishing of the determinant of the quadratic (8):

r0 � �vc�2V�1�3. (18)

On this curve v1 � v2 � vc�r3
0 , the local equatorial cy-

clotron frequency. Equilibria are given by a quintic similar
to (12), which has a double zero at r̃� � 3�2 2 5

p
3�6 for

b � 5�8 2 13
p

3�36. The resulting stability boundary is,
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FIG. 4. Loci of stable equilibria for stable halo orbits about Saturn for several grain radii and (a) prograde positive charge,
(b) retrograde positive charge, and (c) prograde negative charge.
for v � v1,

r0 � �Bvc�V�1�3, (19)

where B � 2�3
p

3 2 5�, on which v � �2 1
p

3�V, and
labeled sn�v1� in Fig. 2(b). An unstable equilibrium or-
bit appears on the v1 � v2 curve, stabilizing upon cross-
ing the sn�v1� boundary. The second mode �v � v2�
remains unstable, disappearing into the equatorial plane
upon reaching the curve labeled pf�v2�. Figure 3(c) shows
level sets of Ue for r0 � 1.381 and F̂ � 3000. In this case
the small nonequatorial wells coexist with a large equato-
rial well extending to large latitude.

These results have important implications for the Cassini
mission. For fixed plasma potential it is easy to locate halo
orbits of a given grain size. Taking F � 10 V gives the
loci of stable equilibria shown in Fig. 4(a) for a positively
charged grain in a prograde orbit about Saturn. This was
done by treating r0 as parameter, solving (8) for v and
getting r0 from (6). The dashed curve corresponds to
the inner stability boundary (18) and has the form r2r �
const. The maximum possible stable grain radius for this
value of F is 128 nm.

Figure 4 presents quantitative predictions of what might
be observed by the CDA. For example, Fig. 4(a) shows
that there are no stable positive prograde halo orbits what-
soever within a spherical radius of r � 3.83Rs, with only
very small grains penetrating to higher latitudes. Such
small grains in prograde orbits are unlikely to be detected
by the CDA. Positive grains in retrograde halo orbits,
on the other hand, are stable for all radii, as shown in
Fig. 4(b). The high relative velocities of these grains with
respect to the Cassini Orbiter make them easy to detect
by the CDA. Note that in this case [see Fig. 3(b)] there
are two topologically distinct families of trapped orbits,
those which cross the equatorial plane and true halo orbits
trapped near a nonequatorial equilibrium. These two
classes have similar energies and could equally well reach
the CDA at a nonequatorial position. However, whether
reflecting particles survive repeated midplane crossings
depends on equatorial radius; generally grains outside the
main rings �r0 $ 2.3Rs� have the best chance of surviv-
ing. Finally, Fig. 4(c) presents loci of stable equilibria
for prograde negatively charged grains. In contrast to
prograde positive charge, negative halo orbits are seen to
be restricted to very small grains at very high latitudes.
In conclusion, it appears that the most likely candidates
for CDA-detectable orbits are to be found among the
retrograde positively charged grains.
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