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On the Spacing of Planetary Systems
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We present a simplified model of planetary accretion based on conservation of mass, conservation of
momentum, and angular-momentum-deficit stability. Within the limitations of this model, we show how
the organization of generic planetary systems may be derived from the knowledge of their initial mass
distribution. Comparisons with our Solar System and the y-Andromedae planetary system are presented.

PACS numbers: 95.10.Ce, 05.45.–a, 45.05.+x, 45.70.Qj
Despite significant recent progress in large-scale
accretion simulations [1,2], due largely to increased com-
putational power, the formation of the Solar System is far
from completely understood [3]. In this paper, we examine
a simpler problem. We do not seek to accurately describe
the formation of the Solar System. Instead, we use a sim-
plified model for planetary orbital evolution and accretion
(in particular, short-period resonances are neglected); but,
within the confines of this model, we show that numeri-
cal results may be largely recovered through analytical
computations. We believe the development of such analyti-
cal tools will help to understand more realistic numerical
experiments. We also investigate whether the general
features of the organization of planetary systems may be
derived from simple physical concepts which do not
involve the precise mechanisms by which accretion
occurs. Technical details and proofs will be presented
elsewhere [4].

Since the characteristic time scale for the divergence of
nearby orbits in the Solar System is approximately 5 Myr
[5,6], the orbital evolution of the planets becomes practi-
cally unpredictable after 100 Myr. Thus in the long term,
the motion of the Solar System may be described by a ran-
dom process, where orbits wander erratically in a chaotic
zone [7]. In these wanderings, orbits are still constrained
by the conservation of energy and angular momentum,
whose normal component with respect to the reference
plane is Cn �

Pnp

k�1 Lk

p
1 2 e2

k cos ik , where ek are the
eccentricities, ik are the inclinations, ak are the semi-
major axes of the orbits, Lk � mk

p
mak , where m �

GM., M. and mk are the solar and planetary masses, G
is the gravitational constant, and np is the number of plan-
ets (np � 8 in the Solar System, excluding Pluto). In the
averaged equations (with respect to the mean longitudes),
the quantities Lk are constants, which also implies the con-
servation of the angular momentum deficit (AMD), C, that
originates from the eccentricities and inclinations [8]:

C �
npX

k�1

Lk�1 2
p

1 2 e2
k cosik� . (1)

This was used by Laplace [9] to prove that the variations
of the planets’ eccentricities and inclinations are bounded
to first order. The AMD may also be thought of as the
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amplitude of nonlinearity present in the averaged planetary
system. In particular, if the AMD is zero, the averaged
motions are planar and circular and stable for all time.
However, large values of AMD usually lead to very chaotic
behavior [8].

We state that a planetary system is AMD stable if its total
AMD is not sufficient to permit planetary collisions. Since
this quantity is conserved to all orders [4], AMD stability
ensures long-time stability of the averaged system. This is
not the case for the complete system, which also contains
short-period resonances whose effects are important in the
vicinity of collisions. At this stage, we will exclude these
short-period resonances and thus consider a simpler model
for planetary accretion.

We consider a system comprising a large central body
of mass m0 together with a large number of small bod-
ies �mj�j�1,np . When the orbits of two bodies of mass
m1 and m2 intersect, they may collide and form a new
body of mass m3. We assume that during collision the
other bodies are not affected, the mass is conserved �m3 �
m1 1 m2�, and the linear momentum in the barycentric
reference frame is conserved �m3 �u3 � m1 �u1 1 m2 �u2�.
At the time of collision, u3 � u1 � u2, so angular mo-
mentum is also conserved: m3u3 ^ �u3 � m1u1 ^ �u1 1

m2u2 ^ �u2. The evolution of orbits during collision is
thus completely defined, and the corresponding evolution
of the orbital elements may be easily implemented on a
computer.

Between collisions, we make the simplifying assump-
tion that the orbits’ evolution is similar to their evolution
in an averaged system in the presence of chaotic diffusion.
More precisely, the orbits evolve in a limited manner (with
a random variation of their elements) constrained by the
conservation of the total AMD. During a binary collision,
the local AMD decreases [4] with a consequent reduction
of the total AMD. Collisions cease once the total AMD
of the system becomes too small to permit planetary col-
lisions. In what follows, we shall call this model the SPS
(simple planetary system) model. The condition for AMD
stability is obtained when the orbits of two consecutive
planets of semimajor axes a and a0 cannot intersect under
the assumption that the total AMD of the system has been
absorbed by the two planets alone. It can easily be seen
© 2000 The American Physical Society
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that the limit condition of collision is obtained in the pla-
nar case, and thus becomes

D �e, e0� � ae 1 e0 2 1 1 a � 0 , (2)

C �e, e0� � g
p

a �1 2
p

1 2 e2 � 1 �1 2
p

1 2 e02 �
� C�L0, (3)

where �m, a, e� is the inner orbit, �m0, a0, e0� is the outer
orbit, g � m�m0, and a � a�a0. We seek the minimum
value of C �e, e0� for which the collision condition (2) is
satisfied. Using Lagrange multipliers, we eliminate e0 and
reduce determination of the limit condition to solving

F�e, a, g� � ae 1
gep

a�1 2 e2� 1 g2e2
2 1 1 a � 0

(4)

in the domain De,a,g , where e [ �0, 1�, a [ �0, 1�, g [

�0, 1`�. We have ≠F
≠e �e, a, g� . 0 in the domain De,a,g :

F�0, a, g� � 21 1 a , 0; F�1, a, g� � 2a . 0;
F�e0, a, g� � ge0�

p
a�1 2 e2

0� 1 g2e2
0 . 0, with

e0 � 1�a 2 1. We are thus ensured that the collision
equation (4) always has a single solution ec in the interval
�0, min�1, e0��. The corresponding value of the AMD
Cc�a, g� � C �ec, e0

c� is then obtained from (3). For any
given values of the ratio of semimajor axes a and the ratio
of masses g, we may thus find the critical value Cc�a, g�
which permits collision. More precisely, collision is only
possible if the total AMD C of the system is larger than
L0Cc�a, g�.

In addition, we can show the existence, and compute
the limit values, of ec, e0

c, Cc for g ! 0 and g !

1`. We find Cc�a, 0� � 1 2 2
p

a�1 2 a� for a ,
1
2 , Cc�a, 0� � 0 for a $

1
2 , Cc�a, 1`� � 1 2p

a�2 2 a�, and Cc�a,
p

a � � �1 2
p

a �2. We are also
able to show that, in the domain De,a,g , Cc�a, g� is in-
creasing with g and decreasing with a (Fig. 1). Denoting
d � 1 2 a, we have also, for a ! 1,

Cc�a, `� � Cc�a, 1� � d2�2 ,

Cc�a,
p

a� � d2�4 .
(5)

We now derive the pattern laws obeyed by the planetary
distribution resulting from our model of planetary accre-
tion. We begin with an arbitrary distribution of planetesi-
mals with linear mass density r�a�, and then allow the
system to evolve according to the rules described above.
We seek the condition under which AMD-stable planetary
systems are formed by the random accretion of planetesi-
mals. This condition requires that the final AMD C does
not permit planetary crossing among the formed planets.

In the accretion phase, we consider a planetesimal of
semimajor axis a and its immediate neighbor, defined as
the planetesimal with semimajor axis a0 such that there
FIG. 1. Values of Cc�a, g� versus a for g values for which
an analytical expression of Cc�a, g� was obtained.

are no planetesimals with semimajor axes in the interval
�a, a0�. In this case, we may assume that a is close to
1, and, in view of the relations (5), we will use as an
approximation of the critical AMD value Cc�a, g�,

Cc1�a, g� � k�g� �da�a�2, (6)

where da � a0 2 a and k�g� is a constant. More pre-
cisely, since Cc�a, g� is an increasing function of g, from
(5) we have k�g� �

1
2 for 1 # g # 1`; 1

4 # k�g� #
1
2 for

p
a # g # 1, and k�g� #

1
4 for g #

p
a.

Assuming that the total AMD of the system is C, the
mass of the planetesimal of semimajor axis a will continue
to increase through accretion as long as C $ L0Cc1. Since
a0 is the closest neighbor to a, we can assume that all of
the planetesimals initially between a and a0 were accreted
by the two bodies of mass m�a� and m�a0�. To first order in
m�m0 and da�a, we have m�a0� � m�a� � r�a�da. For
the limiting case, we then have

C̃
dar�a�

p
a

� k

µ
da

a

∂2

, (7)

where C̃ � C
p

m. Equivalently, we can write da �
�C̃�k�1�3a1�2r21�3 and

m�a� � �C̃�k�1�3a1�2r2�3. (8)

Using these relations, we may compute the resulting pat-
terns for various initial mass distributions, in particular for
r�a� � zap . From Eq. (8), we obtain, for two consecu-
tive planets,

g �
m
m0

� a1�2

µ
r�a�
r�a0�

∂2�3

� a�2p13��6. (9)

From Eq. (6), we thus obtain, for p � 0, g �
p

a and
Cc�a, g� � d2�4 and, for p # 2

3
4 , 1 # g 6 1` and

Cc�a, g� � d2�2.
Thus, for p � 0 [constant distribution, r�a� � z ], we

have k �
1
4 , and we obtain da�

p
a � �4C̃�1�3z 21�3dn.

Since dn � 1 is the order increment from the planet at
a to the adjacent planet at a0, integrating this difference
relation yields the planetary pattern as follows:
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p
a �

p
a0 1

µ
C̃
2

∂1�3

z 21�3n , (10)

The masses are obtained from (8) as m�n� � �2C̃2z �1�3n.
The patterns for different values of p are obtained in a
similar way (cf. Table I).

We have tested these analytical results on a numerical
model of our accretion scheme. The simulation is de-
signed to fulfill the conditions of the SPS model. We start
with a large number of bodies of equal mass, with planar
orbits having evenly distributed perihelia and following a
linear mass density distribution r�a�. Orbit intersections
are monitored step by step.

At each step, the orbits are ordered by increasing a. If
an orbit intersects its neighbor, we assume that a collision
occurs and the two bodies merge to form a larger body
whose orbital parameters are determined by conservation
of mass and momentum. This orbit is set aside until the
next step, and the succeeding orbit is considered. Between
collisions, the orbits do not evolve, except for a random
change of their eccentricities under the condition of con-
servation of total AMD.

The main parameter of these simulations is the final
AMD value Cf . Since the AMD decreases during colli-
sions, the total AMD may become smaller than Cf . In this
case, the eccentricities are increased by a small amount in
order to raise the AMD to the desired final value. This
operation is justified because, in a realistic system, close
encounters that do not result in collision generally increase
the eccentricities and, consequently, also the total AMD
[10]. The SPS simulations are extremely fast, as we do
not integrate the orbital motions; rather we only determine
the intersections of the Keplerian ellipses. This explains
why we are able to use 10 000 bodies in the simulations.

It is beyond the scope of this paper to comment ex-
tensively on the SPS simulations that we conducted. We
present here only the results of SPS simulations corre-
sponding to constant linear distribution � r�a� � z �. The
10 000 planetesimals are distributed from 0.1 to 10 AU,
with a maximum eccentricity of 0.2. The total mass is

TABLE I. Planetary distribution corresponding to different ini-
tial mass distribution. For p � 2

1
2 , we have 1

4 , k ,
1
2 .

p � 0 gives a law in n2 for a�n�, while p � 2
3
2 gives a

Bodes-like power law.

p k a m�a�

0
1
4

p
a �

p
a0 1 �C̃�2z �1�3n �4C̃z 2�1�3a1�2

2
1
2

– a1�3 � a
1�3
0 1 �C̃�kz �1�3 n

3
�C̃z 2�k�1�3a1�6

21
1
2

a1�6 � a
1�3
0 1 �2C̃z �1�3 n

6
�2C̃z 2�1�3a21�6

2
3
2

1
2

log�a� � log�a0� 1

√
2C̃
z

!1�3

n �2C̃z 2�1�3a21�2
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FIG. 2. Distribution of the semimajor axes of the six planet
systems: starting with an initial sample of 5000; 1939 systems
end up with six planets.

mT � 8 3 1026, and the final AMD is Cf � 16 3 1028.
Units are solar mass and astronomical units (AU); the unit
of time is such that m � 1 (i.e., yr�2p).

As expected, we observe a large variation of the final
systems (Fig. 2). For the sake of meaningful statistics, we
simulated 5000 different systems, beginning with a ran-
dom distribution of the perihelia of the initial bodies. In all
cases, each system ended up with between four and eight
planets. The final values of

p
a show a wide range (Fig. 2),

but as predicted their average values follow a linear distri-
bution with impressive accuracy [Fig. 3(a)]. This is also
the case for the mass values, although the agreement is not
as perfect [Fig. 3(b)]. Moreover, the theoretical value of
the slope obtained from Table I for

p
a is 0.464, which is

also very close to the value 0.468 obtained for six planets

FIG. 3. Average values of
p

a (a) and m (b) versus the planet
index n for the 5000 SPS simulations. The solid lines are linear
least-squares fits of the various solutions, depending on the final
number np �np � 4, 5, 6, 7, 8� of planets. For the masses (b),
the last points are not used for the fit.
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TABLE II. Slope values for the fitted lines of Figs. 3(a) and
3(b). np is the final number of planets and N is the number of
cases obtained for a given np . Two cases with nine planets are
not taken into account.

np 4 5 6 7 8

N 451 1965 1939 591 52p
a 0.638 0.533 0.468 0.420 0.376

m�1027� 6.884 5.189 4.161 3.521 2.415

(Table II) (i.e., for the mean number of planets in the final
system). For the masses, we obtain 3.45 3 1027 instead
of 4.17 3 1027.

The most famous attempts to set forth laws for the distri-
bution of planetary orbits are surely the Titius-Bode power
laws [11,12] which in our study would correspond to an
initial mass distribution r�a� � za23�2 (Table I). We pre-
fer here to consider the remark made by Schmidt [13] and
also more recently in Refs. [14,15] that, if the Solar System
is split into sets of inner and outer planets, the semimajor
axes in each set follow a n2 power law to a high degree of
approximation (Fig. 4). In fact, as was recognized in [8],
in the framework of this paper it is natural to separate the
two systems. Indeed, the AMD of the outer planetary sys-
tem is large, while the AMD of the inner planets is much
smaller. We like to think that the dynamics of the outer
planets was initially driven by the total AMD, but then,
as their motion became very regular, there was barely any
further AMD exchange with the inner planets. The inner
planets were then subsequently driven by their own AMD.
Using the numerical values for the Solar System [8], we
find that the slope of

p
a �n� is 0.14 for the inner planets,

while the observed value is 0.199 (cf. Fig. 4); for the outer
planets these values are 0.81 and 1.091, respectively.

If we consider the newly discovered planetary system of
y-Andromedae, which has three observed planets [15], the
agreement is also striking. The distribution of semimajor

FIG. 4.
p

a versus n for the inner (squares) and outer planets
(circles) of the Solar System, and for the known planets of
Upsilon Andromedae (triangles).
axes follows an n2 law very closely (Fig. 4), suggesting a
constant initial density r�a�. The computed value of the
slope of

p
a �n� is 0.56, while the observed value is 0.67.

It should be noted here that these results do not depend
on the constant but unknown mass factor sin i (where i is
the inclination of the observed planetary system) which
cancels in Eq. (10). We consider this agreement to be
very encouraging. Indeed the next step will be to take
into account the short-period resonances, which will have
the effect of increasing the spacing of the planets since
they will provide additional possibilities for collisions. It
should also be noted that in the present paper, we have
not searched for the time scales on which final states are
reached, but only for the final states themselves, which are
characterized by their final AMD. We expect that the new
approach presented here will be helpful in forecasting the
results of more realistic numerical simulations, and also
in understanding the distribution of orbits in extra-solar
planetary systems.
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