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Mean-Field Solution of the Small-World Network Model
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The small-world network model is a simple model of the structure of social networks, which possesses
characteristics of both regular lattices and random graphs. The model consists of a one-dimensional
lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts
greatly reduce the typical path length between any two points on the lattice. We present a mean-field
solution for the average path length and for the distribution of path lengths in the model. This solution
is exact in the limit of large system size and either a large or small number of shortcuts.

PACS numbers: 87.23.Ge, 05.70.Jk, 64.60.Fr, 84.35.+ i
Social networks, such as networks of friends, have two
characteristics which one might imagine were contradic-
tory. First, they show “clustering,” meaning that two of
your friends are far more likely also to be friends of one
another than two people chosen from the population at ran-
dom. Second, they exhibit what has become known as the
“small-world effect,” namely, that any two people can es-
tablish contact by going through only a short chain of in-
termediate acquaintances. Following the work of Milgram
[1], it is widely touted that the average number of such
intermediates is about six—there are “six degrees of sepa-
ration” between two randomly chosen people in the world.
In fact, this number is probably not a very accurate esti-
mate, but the basic principle is sound.

These two properties appear contradictory because the
first is a typical property of low-dimensional lattices but
not of random graphs or other high-dimensional lattices,
while the second is typical of random graphs, but not of
low-dimensional lattices. Recently, Watts and Strogatz [2]
have proposed a simple model of social networks which
interpolates between low-dimensional lattices and random
graphs and displays both the clustering and small-world
properties. In this model, L sites are placed on a regu-
lar one-dimensional lattice with nearest- and next-nearest-
neighbor connections out to some constant range k and
periodic boundary conditions (the lattice is a ring). A num-
ber of shortcuts are then added between randomly chosen
pairs of sites with probability f per connection on the un-
derlying lattice (of which there are Lk). Thus there are
on average Lkf shortcuts in the graph. An example of
a small-world graph with L � 24, k � 3, and four short-
cuts is shown in Fig. 1a. Watts and Strogatz examined
numerically the average distance between pairs of vertices
on small-world graphs and found that only a small density
of shortcuts is needed to produce distances comparable to
those seen in true random graphs.

The small-world model has received a great deal of at-
tention from the statistical physics community in the last
year or so, but despite the large number of papers which
have appeared, very few analytic results are known for the
model. Kulkarni et al. [3] derived an exact relationship be-
tween the average shortest path on a small-world graph and
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the distance between diametrically opposite points on the
underlying lattice, and Dorogovtsev and Mendes [4] gave
an exact solution for the distribution of path lengths on a
different but related “hub” model in which all the shortcuts
are connected together at a central site.

In this paper we derive an analytic solution for the
distribution of path lengths in the small-world model by
making use of a mean-field approximation in which the
distributions of quantities over realizations of the model
are represented by their averages. As we will show, this
approximation is exact in the limit of large system size
[L ¿ 1��kf�].

The approach we use is first to solve the continuum
version of the Watts-Strogatz model shown in Fig. 1b for
general k. In this version of the model the underlying
one-dimensional lattice is treated as a continuum rather
than a discrete lattice and shortcuts are assumed to have
length zero. Once we have a solution for the continuum
model, we then note that if the density of shortcuts is
low, the discrete and continuum models are equivalent,
and hence our solution is also a solution of the discrete
small-world model for general k.

Consider then a “neighborhood” of radius r cen-
tered around a randomly chosen point on a small-world
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FIG. 1. (a) A small-world graph of 24 sites with k � 3 and
four shortcuts. (b) The continuum version of the same graph.
The bold lines denote the portion of the graph which is within
distance r of the point at the top denoted by the arrow. In
this case there are four filled segments, or “clusters,” around
the perimeter of the graph, or equivalently four gaps between
clusters.
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network of L sites, where by neighborhood we mean
the set of points which can be reached by following
paths of length r or less on the graph. Let m�r� be
the number of sites on the graph which do not belong
to this neighborhood, averaged over many realizations
of the randomness in the graph, and let n�r� be the
average number of “gaps” around the lattice among
which those sites are divided—see Fig. 1b. Equiva-
lently, n�r� can be viewed as the number of “clusters” of
occupied sites. In the continuum model both m and n are
real numbers. We will also find it convenient to use the
rescaled variables

m�r� �
m�r�

L
, n�r� �

n�r�
L

. (1)

In the continuum limit the quantities m�r� and n�r�
satisfy differential equations as follows. The rate at which
m decreases with increasing r is equal to the number 2n
of growing edges of clusters on the lattice times the range
k of connections on the lattice. Thus

dm
dr

� 22kn , (2)

or

dm

dr
� 22kn . (3)

This equation is exact for all values of L and f.
The rate at which the number of gaps n changes has

two contributions. First, the number of gaps increases
as a result of the shortcuts on the graph. Let us define
a characteristic length j � 1��kf� such that L�j is the
average number of shortcuts in the graph and the density
of the ends of shortcuts is 2�j [5,6]. This means that as r
increases, new shortcuts are encountered at a rate 4kn�j.
For each shortcut encountered, a new cluster will be started
at a random position on the lattice, provided that the other
end of the shortcut in question falls in one of the gaps
around the ring. The probability of this happening is m�L.
Thus the rate at which clusters (or gaps) are created is
4kmn�jL.

The number of gaps decreases when the edges of a gap
meet one another. This will happen in the interval from r
to r 1 dr if the size of one of the gaps is less than 2k dr.
If we consider all possible ways of distributing m sites
over n gaps, we can see that the probability distribution of
the sizes of the gaps is the same as the distribution of the
smallest of n 2 1 uniformly distributed random numbers
x between 0 and m, which is

p�x� �
n 2 1

m

∑
1 2

x
m

∏n22

. (4)

Thus the probability of one particular gap being smaller
than 2k dr is 1 2 �1 2 2k dr�m�n21, which tends to
2k�n 2 1� dr�m in the limit of small dr. The probability
that any one of them is smaller than 2k dr is n times this.
Thus our final equation for the rate of change of n is
3202
dn
dr

�
4kmn
jL

2
2kn�n 2 1�

m
, (5)

or

dn

dr
�

4kmn

j
2

2kn�n 2 1�L�
m

. (6)

This equation is only exact when the average values m�r�
and n�r� accurately represent the actual values of these
quantities in the particular realization of the model we are
looking at, i.e., when the distribution of values is sharply
peaked. This will be the case when the number of shortcuts
on the lattice is either much less than one—L ø j —or
much greater than one—L ¿ j —and therefore also in
the limit of large system size. We have confirmed this us-
ing numerical simulations, which show the distributions of
m and n becoming more sharply peaked as we go to either
small or large values of L�j. The convergence is slow
for the large system size case, so the distribution is still
moderately broad for the largest system sizes examined
here but, as we will see, the mean-field theory nonethe-
less gives good agreement with numerical results for
L�j * 100.

Between them, Eqs. (3) and (6) are the fundamental
equations which lead to our solution for the small-world
model. These equations can also be derived by writing
down difference equations for the variables m and n in the
discrete small-world model and then expanding in powers
of 1�j and keeping only the leading-order terms [7].

We solve Eqs. (3) and (6) as follows. First, we take their
ratio, which eliminates the variable r and gives us a single
differential equation directly relating m and n thus:

dn

dm
� 2

2m

j
1

n 2 1�L
m

. (7)

The general solution of this equation is

n � 2
2m2

j
1

1
L

1 Cm , (8)

where C is an integration constant. The constant can be
fixed using the boundary conditions m�0� � 1, n�0� �
1�L, which imply that C � 2�j and hence

n �
2
j

�m 2 m2� 1
1
L

. (9)

Substituting this solution back into Eq. (3), we get

dm

dr
�

4k
j

�m2 2 m� 2
2k
L

. (10)

If we neglect the constant term in this equation, we arrive
at the normal logistic growth equation [8], which will give
an accurate solution for m in the regime where the lattice is
neither very full nor very empty. If we keep all the terms,
the general solution given the boundary conditions is
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r �
j

4k

Z m

1

dz
z2 2 z 2 j�2L

�
j

2k
p

1 1 2j�L

3

"
tanh21 1p

1 1 2j�L
2 tanh21 2m 2 1p

1 1 2j�L

#
.

(11)

Rearranging for m this gives

m �
1
2

"
1 1

q
1 1 2j�L tanh

√
tanh21 1p

1 1 2j�L

2 2
q

1 1 2j�L
kr
j

!#
.

(12)

This equation gives us m in terms of r , j, and L for
the continuum version of the small-world model. In the
case where the typical lattice distance between the ends
of shortcuts is much larger than one—j ¿ 1— the con-
tinuum version becomes equivalent to the normal discrete
version of the model and so in this limit our solution is also
a solution of the discrete small-world model. Combining
this condition with the conditions specified earlier, we see
that our solution will be exact when either 1 ø L ø j,
or when 1 ø j ø L. This latter regime is precisely the
regime in which the small-world model is physically inter-
esting: the regime of large system size and a large num-
ber of sparsely distributed shortcuts. In the intermediate
regime between the two conditions given, the solution is
still quite accurate, and gives a good guide to the general
behavior of the model, as we will shortly show.

We now derive some of the more important conse-
quences of Eq. (12). First, we check that it reduces to
the correct expression in the case L ! `. Making use
of the identity tanh�x1 1 x2� � �tanhx1 1 tanhx2���1 1

tanhx1 tanhx2�, we find that to first order in j�L

m � 1 1
j

2L
�1 2 e4kr�j� , (13)

which agrees with the direct derivation for the L � ` case
in Ref. [5].

Next, we note that once we have the fraction m of sites
not belonging to a neighborhood of radius r , we can also
calculate the number A�r� dr in an interval from r to r 1

dr — the “surface area” of the neighborhood—from

A � 2L
dm

dr
� 2k 1

4Lk
j

�m 2 m2� � 2Lkn .

(14)

Thus, once we have either m or n we can easily calcu-
late A.

We can also derive an expression for the average vertex-
vertex separation � on the graph, a quantity which has been
studied by many authors [2–6,9–12]. We write
� �
1
L

Z `

0
rA�r� dr �

Z 1

0
r dm , (15)

where we have made use of Eq. (14). Even before per-
forming the integral, we can see that this implies a certain
behavior on the part of �. Equation (11) shows that kr�j

is a function only of m and of the ratio of L and j. In
other words r has the form

r �
j

k
h�m, L�j� , (16)

where h�x, y� is a universal scaling function with no depen-
dence on the parameters of the model other than through
its arguments. Substituting this form into Eq. (15) and per-
forming the integral over m, we get

� �
j

k
g�L�j� , (17)

where g�x� is another universal scaling function. Except
for the leading factor of 1�k, this scaling form is identical
to the one suggested previously by Barthélémy and Amaral
[6]. Making the substitution g�x� � xf�x�, we can also
write it in the form

� �
L
k

f�L�j� �
L
k

f�Lkf� , (18)

a form which was proposed by Newman and Watts on the
basis of renormalization group arguments, and which has
been confirmed by extensive numerical simulation [10,11].

The complete solution for � is obtained by substituting
(11) into (15) and performing the integral, which gives

� �
j

2k
p

1 1 2j�L
tanh21 1p

1 1 2j�L
. (19)

The scaling function f�x� is then given by

f�x� �
1

2
p

x2 1 2x
tanh21 x

p
x2 1 2x

. (20)

In Fig. 2 we show this form for the scaling function along
with numerical data from direct measurements of the av-
erage path length on k � 1 discrete small-world graphs of
size up to L � 107 sites. As the figure shows, the two
are in good agreement for large and small values of the
independent variable x but, as expected, there is some dis-
agreement in the region around x � 1 where j and L are
of the same order of magnitude. In the lower inset of the
figure we have replotted the same data on log-log scales,
to show how the analytic and numerical results converge
for large values of x.

The asymptotic forms of Eq. (20) are

f�x� �

8><
>:

1
4 for x ø 1 ,

�log2x��4x for x ¿ 1 ,
(21)

where we have made use of the identity tanh21x �
1
2 log��1 1 x���1 2 x��. These forms are in agreement
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FIG. 2. The average path length as a fraction of system size on
a k � 1 small-world graph, plotted against the average number
L�j of shortcuts. The circles are numerical measurements for
the discrete model and the solid line is the analytic solution for
the continuum model, Eq. (20). The error bars on the numerical
measurements are smaller than the points. Lower inset: the
same data replotted on log-log scales, showing the convergence
of the numerical and analytic results in the limit of large L�j.
Upper inset: the average path length on small-world graphs with
L � 106, for values of f from 0.01 up to 1 (circles) and the
analytic solution, Eq. (19) (dotted line).

with previous conjectures [6,10], which suggested that
f�x� should have the value 1

4 for small x and should go
as �logx��x for large x. As we see, the leading numerical
factor in the latter case is also 1

4 ; this figure is exact, since
Eq. (20) is exact for large x.

In passing, we note that there is a simple physical in-
terpretation of the scaling function f�x�: apart from the
leading factor of 1

4 , it is the fraction by which the aver-
age path length on a small-world graph is reduced if the
graph has x shortcuts. For example, Eq. (20) indicates
that it takes x � 3.5 shortcuts on average to reduce the
mean path length by a half, and 44 shortcuts to reduce it
by a factor of 10. Thus only a small number of shortcuts
are needed to reduce path lengths quite considerably. The
same conclusion has been reached by Watts and Strogatz
[2] on the basis of numerical data.

In the upper inset of Fig. 2 we show how our solution
fails when the shortcut density becomes too high. The
3204
figure shows numerical results for � for a variety of values
of the shortcut density f � 1�j from 0.01 up to 1, for
systems of one million sites (circles). The dotted line is
Eq. (19). As the figure shows, the analytic solution is a
reasonable guide to the behavior of � up to quite large
values of f but, as expected, fails when f gets close to 1.

To conclude, we have given a mean-field-like analytic
solution for the distribution of path lengths in the con-
tinuum version of the Watts-Strogatz small-world model.
This solution is exact in the limit of large system sizes for
a given density of shortcuts, or in the limit of low shortcut
density for a given system size. In the case where the short-
cut density is low but the total number of shortcuts on the
lattice is large (because the lattice itself is also large) our
solution is also an exact solution of the normal discrete
small-world model. We have also derived an expression
for the average path length in the model and from this ex-
tracted the scaling forms which this path length obeys. We
have checked our results against numerical simulation of
the discrete small-world model and find good agreement
in the regions where our solution is expected to be exact.
In other regions the solution is a good guide to the general
behavior of the model but shows some deviation from the
numerical results.
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