
VOLUME 84, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 3 APRIL 2000
Denoising Human Speech Signals Using Chaoslike Features
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A local projective noise reduction scheme, originally developed for low-dimensional stationary de-
terministic chaotic signals, is successfully applied to human speech. This is possible by exploiting
properties of the speech signal which resemble structure exhibited by deterministic dynamical systems.
In high-dimensional embedding spaces, the strong inherent nonstationarity is resolved as a sequence of
many different dynamical regimes of moderate complexity.

PACS numbers: 87.19.Dd, 05.40.Ca, 05.45.Jn, 43.60.+d
Nonlinear time series analysis comprises a set of tech-
niques for the analysis, manipulation, and understanding
of aperiodic signals relying on the hypothesis of determin-
istic chaos [1,2]. This means that the signal reflects the
complex dynamics of a purely deterministic (often few-
degree-of-freedom) system. Since such signals represent
a very limited class with most probably no relevance for
field measurements, it is of considerable interest to explore
how far these concepts can be applied more generally to
aperiodic signals with nondeterministic origin and strong
nonstationarity.

Noise reduction for human speech is of high technologi-
cal relevance. Background noises of all kinds are inconve-
nient in telecommunication, deteriorate automatic speech
recognition, and cause serious difficulties for the users of
electronic hearing aids. A well-established remedy is fil-
tering of the signal in the frequency domain, in the simplest
case by bandpass filters. Because of the aperiodic nature
of voice signals, expressed by broadband power spectra,
simple filters distort the signal more than they reduce noise,
such that more refined methods are required. As a conse-
quence of the high technical relevance of this field, very
sophisticated combinations of filtering techniques using
Fourier transforms, wavelet transforms, and other methods
are in use in the specialized field of speech processing.
Examples of state-of-the-art results are Refs. [3,4], and a
modern spectral subtraction scheme which became a kind
of standard was introduced in [5].

Models of the sound generating mechanism of humans
indicate that stationary articulated human voice such as
the vowel “aaaaaa” (German pronunciation) have a low-
dimensional origin. In [6], a two-mass model of vocal-fold
vibrations is analyzed with methods from nonlinear dy-
namics; it is shown that a sufficiently large tension
imbalance of the left and right vocal fold induces bi-
furcations to subharmonic regimes, toroidal oscillations,
and chaos. The reconstruction of attractors and the
estimation of their properties indicate low dimensionality
of the attractors generating the signal. Furthermore, it
was shown by means of empirical orthogonal functions
that normal phonation is well represented by only two
eigenmodes. The simulation of disordered voice has
0031-9007�00�84(14)�3197(4)$15.00 ©
shown that the three strongest modes contain 90% of
the variance [7]. In contrast to stationary voice signals,
the concatenation of different phonemes to full words or
sentences does not represent a low-dimensional system,
since there are frequent and arbitrary switches between
different kinds of dynamical behavior. Because of the
transition regions from the preceding phoneme and to
the successive phoneme, a phoneme inside a word even
differs from the same phoneme when it is isolated and
elongated.

In this Letter we report on the successful application of
a noise reduction scheme which was originally developed
using exclusively properties of low-dimensional stationary
deterministic dynamical systems. The success is possible
by the identification and exploration of quasideterministic
structure in the voice signal. Hereby, the reconstruction
of an embedding space allows one to efficiently cope with
the problem of nonstationarity. The different phonemes
are identified implicitly. As argued before and as it will
be proven below, the dynamics inside the single phonemes
is very close to low-dimensional deterministic. The appli-
cation of this raw concept yields already typical gains in
the signal-to-noise ratio which are comparable to the most
recent results published in the signal processing literature
(e.g., [3,4]). The results can be improved by postprocess-
ing the denoised signal with other filters which rely on
properties different from those exploited by our method
to distinguish between signal and noise (e.g., spectral
properties).

To get an impression of how the method works, assume
that one has to eliminate noise from music stored on an
old-fashioned long playing record, induced by scratches on
the black disc. The task becomes almost trivial if one has
several samples of this LP. When playing them synchro-
nously, the signal part of the different tracks is identical,
whereas the noise part is independent. Already simple av-
eraging will enhance the signal. In deterministic chaotic
signals, this redundancy is stored in the past: Since deter-
minism means that similar initial conditions will behave
in a similar way (at least for short periods), one solely
has to look for almost repetitions of the present signal in
the past. Based on this idea, several approaches for noise
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reduction for deterministic chaotic data have been de-
veloped [8]. One of them [9] will be sketched in the
following.

Let a dynamical system be given by the map F: G ! G

in a state space G , Rd . The equation of motion thus
reads xn11 � F�xn�. Not knowing F, one can determine
it in linear approximation from a long time series �xk�,
k � 1, . . . , N , by determining a set of neighboring points
Un of xn and minimizing

s2
n �

X

k:xk[Un

�Anxk 1 bn 2 xk11�2, (1)

the one-step prediction error, with respect to An and bn

[10,11]. The implicit relation Anxk 1 bn 2 xk11 � 0
expresses that data are confined to a hyperplane in the ex-
tended phase space. When the signal xk is superimposed
by random noise, yk � xk 1 hk , the set Un will no longer
be embedded in a manifold whose tangent space is the hy-
perplane defined by An and bn, but will form a cloud scat-
tered around it. Reducing noise now means to project the
noisy yn onto this hyperplane. If not xk but only a scalar
observable sk is measured, one can reconstruct a phase
space by the Takens time delay embedding method [12,13],
combining successive elements of the time series �sk� to
vectors in Rm, sn � �sn, sn2t , . . . , sn2�m21�t�. Here, the
embedding dimension m and the lag t has to be chosen
suitably.

The noise reduction scheme outlined above is called lo-
cal projective noise reduction, as illustrated in Fig. 1, and
can be formalized by a minimization problem. The con-
ceptual steps in the numerical algorithm are the following:
(i) For every delay vector sn, all neighbors in the delay em-
bedding space are collected (i.e., Un is formed). (ii) The
covariance matrix Cij �

P
Un

�ŝk�i�ŝk�j is computed [ŝk

means that the mean value (on Un) has been subtracted],
and its singular values are determined. (iii) The vectors
corresponding to the largest singular values are supposed
to represent the directions spanning the hyperplane defined
above by An and bn. (iv) To reduce noise, sn is projected
onto these dominant directions. The method is iterated a
few times for convergence. The choice of the parameters

FIG. 1. Schematic representation of the noise reduction
method.
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entering the algorithm (m, t, diameter of Un, number of
singular vectors to project on) is the crucial problem and
has to respect the particular properties of the signal and of
the noise.

We use a recording lasting 3 sec of the vowel “a” for
a demonstration of the method for an aperiodic station-
ary signal. Is is contaminated numerically by 10% white
noise, and afterwards filtered by the noise reduction al-
gorithm. The power spectrum before adding noise, after
adding noise, and after noise reduction is shown in Fig. 2.
Obviously, we were able to restore significant parts of the
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FIG. 2. The power spectrum of 3 sec of the vowel “a”: original
recording, after adding noise numerically, and after nonlinear
noise reduction. Most of the structure of the original spectrum
below the noise level could be reconstructed.
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spectrum which are well below the noise level and thus
invisible for any bandpass filter.

The voice signals studied in the following are taken from
a language course on CD ROM with a sampling rate of
22.050 kHz and a precision of 12 bit. The data were con-
verted to real numbers and numerically contaminated by
different types and amplitudes of noise and subjected to
the noise reduction algorithm. As a measure of perfor-
mance, we use the gain in dB, given by

gain � 10 log10

P
� yk 2 sk�2

P
� ŷk 2 sk�2 , (2)

where sk is the clean signal, yk the noisy signal, and ŷk

the signal after noise reduction. Additionally, we reconvert
noisy and denoised signals into the wav-audio format and
inspect the results accoustically.

The crucial aspect for the application of the non-
linear noise reduction algorithm is the choice of the cor-
rect embedding parameters and the dimension of the linear
subspace onto which we project in order to capture the
structure we want to preserve. The surprising issue of
this paper is that structure in embedding space does in
fact exist in human voice signals. Human voice forms
an aperiodic and highly nonstationary signal. In Fig. 5
we show the trace of the Italian words “buon giorno.”
They are composed of subunits, called phonemes, which
can be considered as different types of dynamics. Careful
investigation of time and length scales, including the use
of recurrence plots [14,15] (Fig. 3), shows that the sound
wave characterizing a single phoneme (duration between
50 and 150 ms) has a characteristic profile on about
5–10 ms. A kind of phase angle on this highly nontrivial
oscillation will then identify the instantaneous amplitude.
Thus our time delay embedding space should allow us
to identify the actual phoneme and the phase inside the
phoneme. Both are achieved by 20- to 30-dimensional
delay vectors with a time lag of 3 to 5, covering a time
interval of about 8 ms. In this reconstructed state space
neighbors represent very similar wave forms and carry
thus the redundancy needed to reconstruct the original
signal. The neighborhood sizes for the local linear
reconstruction of the dynamical constraints are chosen to
guarantee about 5–20 neighboring states. Although this
number is undesirably small, it cannot easily be increased.
A single phoneme does not offer more than �20 almost
repetitions of a given wave. Searching for neighbors in
other words (presumably in identical phonemes) intro-
duces large numerical effort, requires longer sentences,
and, most importantly, does not improve the situation
much, since changed amplitudes and dilatation or com-
pression of identical phonemes in different words destroy
the similarity. Thus all results presented here were gained
from intraphoneme neighbors. Figure 3 is a section of a
recurrence plot proving these claims.

The projection is done onto subspaces of dimension of
3–7. The success of this strict reduction of dimensionality
FIG. 3. Main panel: Section of a recurrence plot: In the plane
of indices i, j a dot is printed, whenever the delay vectors
fulfill jsi 2 sjj , e. It proves that our delay vectors really
represent meaningful states, where the line structure shows the
approximate periodicity inside the phonemes and the number
of intraphoneme neighbors. There are almost no dots for
ji 2 jj . 2000, reflecting the lack of interphoneme similar-
ities (for this particular e). Upper panel: The speech signal
underlying the recurrence plot.

implies that the wave dynamics inside a given phoneme
represents only a few degrees of freedom, once it has been
identified in the high-dimensional space. This result is in
agreement with the study presented in [16] and explains
also why as few as 20 neighboring points are sufficient for
the algorithm: Only the subspace onto which the projec-
tion is done has to be identified, all the remaining direc-
tions are irrelevant. Thus only the large singular values
and the corresponding singular vectors of the covariance
matrix Cij are needed.

0 100 200 300 400 500
noise level (% of the variance of the signal)

0

5

10

15

ga
in

 (
dB

)

Ephraim and Malah filter
Local projective noise reduction

FIG. 4. The gain of the noise reduction scheme as a function
of the noise level. A comparison with the Ephraim and Malah
filter is shown.
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FIG. 5. The clean signal of “buon giorno,” noise added to the
signal, and the remaining noise after noise reduction (same scale,
different offsets). The amplitude of the remaining noise varies
systematically, i.e., the success of the noise reduction depends
partly on the signal.

The high dimension of the embedding space helps to
identify neighbors also for rather high noise levels: Usu-
ally, neighborhoods merge if all data are contaminated by
large amounts of noise. Here, due to the fact that the
signal is rather sparsely filling the 20- to 30-dimensional
space, this is not a problem, and we find reasonable re-
sults (Fig. 4). For noise levels bigger than 150% the com-
putation of the singular values of the covariance matrix
gives unreliable results and the filtering is performed via
an averaging between the identified neighbors rather than
a projection into the approximated submanifold. However,
this may be seen as a degenerate projection onto a zero-
dimensional space and is fully contained in the general
algorithm. An ideal filter would leave the unperturbed sig-
nal unaffected. Because of the violation of the basic as-
sumptions about stationarity and determinism, this is not
true for the voice signal, but only below 5% of noise do
these distortions become larger than the gain due to noise
elimination.

To summarize, nonlinear projective noise reduction is a
method which originally was designed to treat determin-
istic chaotic data with low dimension and constant sys-
tem parameters. The essential ingredients are the ideas
of embedding of scalar data, which in the mathematical
3200
framework only makes sense for deterministic stationary
signals, and of manifolds representing dynamical con-
straints. This work demonstrates that the representation in
a state space and the confinement to manifolds are approxi-
mately present locally for human voice signals, although
these signals are nondeterministic and strongly nonstation-
ary. The high embedding dimension here helps to resolve
the nonstationarity, since different dynamical regimes (dif-
ferent phonemes) occupy distinct regions in this space and
are thus naturally separated. Quantitative comparison with
current methods shows the validity of the idea and the
power of the proposed filtering scheme. A similar scheme
has been used for almost stationary weakly nondetermin-
istic signals with the aim of signal separation as a kind of
nonlinear three-way filter [17].
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