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Recovery of Entanglement Lost in Entanglement Manipulation
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When an entangled state is transformed into another one with probability one by local operations and
classical communication, the quantity of entanglement decreases. This Letter shows that entanglement
lost in the manipulation can be partially recovered by an auxiliary entangled pair. As an application,
a maximally entangled pair can be obtained from two partially entangled pairs with probability one.
Finally, this recovery scheme reveals a fundamental property of entanglement relevant to the existence
of incomparable states.

PACS numbers: 03.67.Hk, 03.65.Bz
Quantum entanglement plays an important role in quan-
tum information processing. It realizes novel information
processing that is impossible in a classical manner. Thus,
in addition to practical applications, quantum entangle-
ment itself has been widely studied in recent years. For
a detailed review, see Ref. [1] and references therein.

One of the most fundamental applications of an en-
tangled state is quantum teleportation [2]. In teleporta-
tion, Alice sends a qubit to Bob via a previously shared
maximally entangled state between them,

jF1�AB �
1
p

2
�j00�AB 1 j11�AB� . (1)

We refer to the state jF1�AB as a Bell pair in the following.
All the operations needed are local operations on their
respective systems and classical communication between
them. Since Alice and Bob are distantly located, they
cannot jointly perform global operations on the composite
system. This is always the case in all applications of
entangled states such as quantum communication and
quantum cryptography. Therefore the following question
is crucial to understanding the nature of entangled states.
What can we do on entangled states by local operations
and classical communication alone?

Recently Nielsen found necessary and sufficient condi-
tions for an entangled state to be transformed into another
one by local operations and classical communication [3].
It was also proved that the quantity of entanglement de-
creases during the transformation.

It is natural to wish that entanglement would not de-
crease because it is a valuable resource. This Letter shows
that entanglement lost in entanglement manipulation can
be partially recovered by an auxiliary entangled pair. Be-
sides the original entangled state to be transformed, we
prepare another entangled state and perform collective op-
erations on these two pairs. This transformation enables a
part of entanglement lost in the original pair to be trans-
ferred to the auxiliary one. Entanglement of the whole sys-
tem decreases during the transformation in this case too,
as required by Nielsen’s result. But this scheme realizes
the partial recovery of entanglement that is absolutely im-
possible by individual manipulations of each pair.
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As a particular example of the recovery procedure, it is
also shown that we can obtain a Bell pair with probability
one from two partially entangled pairs satisfying a certain
condition.

Furthermore, the condition for this recovery scheme to
work reveals a fundamental property of entanglement. The
property has a deep connection with the fact that there exist
essentially different types of bipartite pure-state entangle-
ment, namely, incomparable states [3].

In this Letter, we will obtain the main result using Niel-
sen’s theorem. First, we introduce a mathematical notion
of majorization that is needed in the theorem and is also a
main tool in this Letter. Let x � �x1, . . . , xn� and y �
�y1, . . . , yn� be real n-dimensional vectors. Let x# �
�x#

1, . . . , x#
n� be the vector obtained by rearranging the ele-

ments of x in the decreasing order, i.e., x
#
1 $ . . . $ x#

n.
We say that x is majorized by y, written in x ¡ y, if

kX

j�1

x
#
j #

kX

j�1

y
#
j , 1 # k # n 2 1 , (2)

and
nX

j�1

x
#
j �

nX

j�1

y
#
j . (3)

This Letter deals with only bipartite pure entangled
states, which are described in Schmidt decomposition such
as jc�AB �

P
i
p

ai ji�Aji�B where �ai� are positive real
numbers satisfying the normalization condition

P
i ai � 1.

In Schmidt decomposition, �ji�A� and �ji�B� are orthonor-
mal basis of respective systems; thus eigenvalues of the
reduced density matrix rc � trB�jc�AB AB�cj� are
a1, . . . , an. We define the vector of these eigenvalues
as lc � �a1, . . . , an�. With the theory of majorization,
Nielsen proved the following theorem [3].

Theorem.—A bipartite pure entangled state jc�AB is
transformed into another one jf�AB with probability one by
local operations and classical communication if and only
if lc is majorized by lf, i.e.,

jc�AB ! jf�AB iff lc ¡ lf . (4)

It was also proved that the quantity of entanglement
E�c�, which is uniquely defined as the von Neumann
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entropy of rc [4,5], decreases during the transformation,

if jc�AB ! jf�AB, then E�c� $ E�f� . (5)

This follows from the mathematical theorem that if lc ¡
lf, then E�c� $ E�f�, together with Eq. (4). Equa-
tion (5) means that local operations and classical commu-
nication always reduce entanglement.

However, we want to prevent entanglement from de-
creasing as far as possible, since we have to send qubits
without teleportation in order to share entanglement be-
tween distant observers again. We will show that an auxil-
iary entangled pair can partially recover the entanglement
lost in the manipulation of two-qubit entangled states.

The recovery scheme presented in this Letter goes as
follows. Suppose we originally want to transform jc�AB

into jf�AB. (In the following, we exclude the trivial case
jc�AB � jf�AB.) We prepare another entangled state
jv�A0B0 besides the system AB. Then we perform col-
lective operations on jc�AB ≠ jv�A0B0 , and convert it to
jf�AB ≠ jx�A0B0 where jx�A0B0 has more entanglement
than jv�A0B0 . This transformation transfers a part of the
entanglement lost in the system AB to the system A0B0.

In the following, it is proved that this scheme is really
possible. We begin with a concrete example to understand
the idea of this scheme, then proceed to a general proof.
We deal with the following example:

jc�AB �
p

0.7 j00�AB 1
p

0.3 j11�AB ,

jf�AB �
p

0.8 j00�AB 1
p

0.2 j11�AB ,

jv�A0B0 �
p

0.6 j00�A0B0 1
p

0.4 j11�A0B0 ,

jx�A0B0 �
p

0.55 j00�A0B0 1
p

0.45 j11�A0B0 .

(6)

The vectors of eigenvalues are

lc � �0.7, 0.3� ,

lf � �0.8, 0.2� ,

lv � �0.6, 0.4� ,

lx � �0.55, 0.45� .

(7)

Majorization relations lc ¡ lf and lv ¬ lx indicate

jc�AB ! jf�AB, jv�A0B0 √ jx�A0B0 , (8)

and

E�c� $ E�f�, E�v� # E�x� . (9)

If we consider two entangled pairs as one system, the
whole system is an entangled state with Schmidt number
four, thus

lc≠v � lc ≠ lv � �0.42, 0.28, 0.18, 0.12� , (10)

lf≠x � lf ≠ lx � �0.44, 0.36, 0.11, 0.09� . (11)

According to Eq. (2), three inequalities 0.42 , 0.44,
0.42 1 0.28 , 0.44 1 0.36, and 1 2 0.12 , 1 2 0.09
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show that lc≠v ¡ lf≠x . [The equality (3) is satisfied by
normalization conditions.] Therefore we can transform
jc�AB ≠ jv�A0B0 into jf�AB ≠ jx�A0B0 by collective ma-
nipulation according to Nielsen’s theorem. Equation (9)
means that entanglement lost in the system AB is partially
recovered by the system A0B0. The system AB has no
difference between the collective manipulation and the
individual one. As for the system A0B0, this collective
method realizes an increase in entanglement, which cannot
be done individually.

Next we prove that the recovery as stated above is al-
ways possible. We find the condition where there exist
auxiliary states jv�A0B0 and jx�A0B0 such that E�v� , E�x�
and lc≠v ¡ lf≠x , provided that jc�AB ! jf�AB. Let

jc�AB �
p

a j00�AB 1
p

1 2 a j11�AB ,

jf�AB �
p

b j00�AB 1
p

1 2 b j11�AB ,

jv�A0B0 �
p

p j00�A0B0 1
p

1 2 p j11�A0B0 ,

jx�A0B0 �
p

q j00�A0B0 1
p

1 2 q j11�A0B0 .

(12)

The assumption jc�AB ! jf�AB gives

1
2

# a , b # 1 . (13)

The condition E�v� , E�x� requires

1
2

# q , p # 1 , (14)

because E�v� # E�x� is equivalent to lv ¡ lx in the
case of two-qubit states and the equality holds only for
p � q. Combining the two pairs AB and A0B0, we have

lc≠v � ���ap, a�1 2 p�, �1 2 a�p, �1 2 a� �1 2 p���� ,
(15)

lf≠x � ���bq, b�1 2 q�, �1 2 b�q, �1 2 b� �1 2 q���� .
(16)

In the following, we seek a pair of numbers �p, q�
that satisfies the majorization condition lc≠v ¡ lf≠x and
Eq. (14) with the assumption (13).

The majorization relation lc≠v ¡ lf≠x consists of
three inequalities. [The equality (3) is satisfied by normal-
ization conditions.] We have to rearrange the components
of the vectors (15) and (16) in the decreasing order before
imposing the inequality conditions (2). Equations (13) and
(14) indicate that the largest and the smallest elements in
(15) are ap and �1 2 a� �1 2 p�, respectively. Similarly,
bq and �1 2 b� �1 2 q� are the largest and the smallest
elements in (16), respectively. Thus the first and the third
inequalities of the majorization condition are ap # bq
and 1 2 �1 2 a� �1 2 p� # 1 2 �1 2 b� �1 2 q�, i.e.,

q $
a
b

p , (17)

1 2 q #
1 2 a
1 2 b

�1 2 p� , (18)
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where Eq. (13) implies

1
2

#
a
b

, 1, 1 ,
1 2 a
1 2 b

. (19)

However, Eqs. (13) and (14) cannot tell which is the
next largest element in (15) and (16). If a # p, then a�1 2

p� # p�1 2 a�, and so on. Thus comparing the second
and the third elements in each vector, we have the fol-
lowing three cases: (i) a # p, b # q, (ii) a # p, b . q,
(iii) a . p, b . q. [The case a . p, b # q contradicts
Eqs. (13) and (14).]

(i) a # p, b # q: The next largest elements in (15) and
(16) are �1 2 a�p and �1 2 b�q, respectively. Thus the
second inequality of the majorization condition is ap 1

�1 2 a�p # bq 1 �1 2 b�q, i.e., p # q, which contra-
dicts Eq. (14).

(ii) a # p, b . q: Since the elements �1 2 a�p and
b�1 2 q� are the next largest elements in (15) and (16), re-
spectively, we have ap 1 �1 2 a�p # bq 1 b�1 2 q�,
i.e., p # b. Therefore,

a # p # b, b . q . (20)

(iii) a . p, b . q: Similarly, the majorization condi-
tion requires a # b, which is implied in Eq. (13). In this
region, we have

a . p, b . q . (21)

Summing up these cases, we see that the second inequal-
ity of the majorization condition is Eq. (20) or (21):

p # b, q , b . (22)

As a result, �p, q� must satisfy Eqs. (14), (17)–(19), and
(22). Figure 1 shows these conditions as a shaded region in
p-q plane. It indicates that there exists the shaded region
irrespective of a and b. Thus if we take the auxiliary states

FIG. 1. The condition for the recovery scheme is satisfied in
the shaded region. The thick solid line, the broken line, and
the dash-dotted line represent q � p, 1 2 q � ��1 2 a���1 2
b�� �1 2 p�, and q � �a�b�p, respectively.
jv�A0B0 and jx�A0B0 appropriately, recovery of entanglement
is always possible.

Now, we discuss the implication of Fig. 1 in detail. The
shaded region in Fig. 1 is divided into two parts, q $ a
and q , a. In the region q $ a, we have 1

2 # a # q ,

p # b # 1. This means that lc ¡ lx and lv ¡ lf.
If we perform jc�AB ! jx�AB, jv�A0B0 ! jf�A0B0, and in-
terchange AB and A0B0, then the recovery process stated
above is also accomplished by only the individual ma-
nipulations of each pair. Therefore this region of Fig. 1
presents trivial recovery that needs no collective manipu-
lation. However, in the region q , a, we have 1

2 # q ,

a # p # b # 1, or 1
2 # q , p , a , b # 1. These

inequalities imply that neither jc� nor jv� can be trans-
formed into jx�. Thus this region presents true recovery
that only the collective manipulation can realize. In fact,
we do not need the trivial region for recovery, because, for
each point in the trivial region, there exist points with the
same p and the smaller q in the true region. Only the true
region, the shaded part in q , a, is of great importance.

It should also be noted that the complete recovery is
represented only at the point �b, a� in Fig. 1, which corre-
sponds to the trivial interchange of AB and A0B0.

A useful application of this scheme is to obtain a Bell
pair [Eq. (1)] after a recovery procedure. Figure 1 shows
that if we prepare jv�A0B0 having p such that p # b��2a�,
we can transform the A0B0 pair into a Bell pair with proba-
bility one. In addition to the Bell pair, there exists residual
entanglement in the system AB. If we do not need this
residual entanglement in AB, which means b � 1, a Bell
pair can always be obtained from two partially entangled
pairs jc�AB, jv�A0B0 such that

ap ,
1
2

. (23)

An explicit example of this concentration is as follows:

jc�AB �
p

0.6 j00�AB 1
p

0.4 j11�AB ,

jf�AB �
p

0.9 j00�AB 1
p

0.1 j11�AB ,

jv�A0B0 �
p

0.7 j00�A0B0 1
p

0.3 j11�A0B0 ,

jx�A0B0 �
p

0.5 j00�A0B0 1
p

0.5 j11�A0B0

� jF1�A0B0 .

(24)

The eigenvalues of the product states are

lc≠v � lc ≠ lv � �0.42, 0.18, 0.28, 0.12� , (25)

lf≠x � lf ≠ lx � �0.45, 0.45, 0.05, 0.05� . (26)

Thus lc≠v ¡ lf≠x indicates that the concentration
jc�AB ≠ jv�A0B0 ! jf�AB ≠ jF1�A0B0 is possible with
probability one.

The Procrustean method [4] is already known as a way
of obtaining a Bell pair from a partially entangled state.
Since this method works only probabilistically, however,
we cannot necessarily obtain a Bell pair by applying the
method to partially entangled pairs. Thus this application
3191



VOLUME 84, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 3 APRIL 2000
of the recovery scheme is very important for practical pur-
poses. If there happen to be two partially entangled pairs
satisfying Eq. (23), then we can always prepare a Bell pair
from them for future use.

The collective manipulation of both pairs is the heart
of this recovery scheme. It makes the transformation pos-
sible that is absolutely impossible by individual manipula-
tions of each pair. This is reminiscent of the reversibility
between entanglement concentration and dilution in the
asymptotic limit [4,5] and the catalysis in entanglement
manipulation discovered in [6].

Finally we consider a fundamental property of entangle-
ment that this recovery scheme reveals. The most striking
part of the condition described in Fig. 1 is p # b. This
condition implies that, if we intend to recover the entangle-
ment lost in the transformation jc�AB ! jf�AB, we must
prepare the auxiliary state jv�A0B0 that has more entangle-
ment than jf�AB. It depends on only the final state jf�AB,
not the quantity of entanglement lost in the transforma-
tion jc�AB ! jf�AB, whether the recovery procedure by
jv�A0B0 is possible or not. No matter how much entan-
glement is lost, nothing can be recovered if the auxiliary
state is not sufficiently entangled. This is the fundamental
property of bipartite pure entangled states revealed by the
recovery scheme. This surprising feature of entanglement
is depicted in Fig. 2. The notion of entanglement measure
cannot fully explain this property.

This new property of entanglement is a direct conse-
quence of the existence of incomparable states [3]. The
states ja�AB and jb�AB are called incomparable if neither
ja�AB ! jb�AB nor jb�AB ! ja�AB. If p is greater than
b, then the second inequality of the majorization condition
lc≠v ¡ lf≠x is not satisfied. Taking into account other
inequalities of the majorization condition, we see that
jc�AB ≠ jv�A0B0 and jf�AB ≠ jx�A0B0 are incomparable in
the region b , p # 1, �a�b�p # q , p. [In the region
b , p # 1, �1�2� # q , �a�b�p, the entanglement of
the whole system increases because of lc≠v ¬ lf≠x .
Thus this region is excluded by Nielsen’s result.] There-
fore the impossibility of recovery by an insufficiently
entangled pair is directly connected to the existence of
incomparable states.

In conclusion, we have proved that entanglement lost in
entanglement manipulation can be partially recovered by
an auxiliary entangled pair. This recovery scheme has also
3192
FIG. 2. Each pair connected by a solid or dashed line rep-
resents an entangled state. The axis indicates the quantity of
entanglement. If jv�A0B0 has less entanglement than jf�AB, the
recovery process is impossible no matter how much entangle-
ment is lost in the system AB.

revealed the fundamental property of quantum entangle-
ment that has a connection with the existence of incom-
parable states: When we intend to transfer entanglement
from one pair to another, nothing can be transferred if the
recipient is not sufficiently entangled. More detailed in-
vestigations are necessary to grasp the deep implication of
this property.
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manuscript.
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