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A model of Boolean agents competing in a market is presented where each agent bases his action on
information obtained from a small group of other agents. The agents play a competitive game that re-
wards those in the minority. After along time interval, the poorest player’s strategy is changed randomly,
and the process is repeated. Eventualy the network evolves to a stationary but intermittent state where
random mutation of the worst strategy can change the behavior of the entire network, often causing a
switch in the dynamics between attractors of vastly different lengths.
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Dynamica systems with many elements under mutual
regulation or influence are thought to underlie much of
the phenomena associated with complexity. Such systems
arise naturally in biology, as, for instance, genetic regu-
latory networks [1], or ecosystems, and in the social sci-
ences, in particular the economy [2]. Economic agents
make decisions to buy or sell, adjust prices, and so on
based on individual strategies which take into account the
heterogeneous externa information each agent has avail-
able at the time, as well as internal preferences such as
tolerance for risk. External information may include both
globally available signals that represent aggregate behav-
ior of many agents such as a market index, or specific
(local) information on what some other identified players
are doing. In this case each agent has a specified set of
inputs, which are the actions of other agents, and a set of
outputs, his own actions, that may be conveyed to some
other agents. Thus, the economy can be represented as a
dynamical network of interconnected agents sending sig-
nals to each other with possible, global feedback to the
agents coming from aggregate measures of their behavior
plus any exogenous forces.

Each agent’s current strategy can be represented as a
function which specifies a set of outputs for each possible
input. In the simplest case the agents have only one binary
choice such as either buying or selling a stock [3]. Asin-
dicated first by Arthur this simple case already presents
a number of intriguing problems. In his “bar problem,”
each agent must decide whether to attend a bar or re-
frain based on the previous aggregate attendance history
[4]. Challet and Zhang made a perspicuous adaptation,
the so-called minority model, where agents in the minor-
ity are rewarded, and those in the majority punished [5].
Common to all these and related works [6] is that the
network of interconnections between the agents is totally
ignored. They are mean-field descriptions. Each agent re-
sponds only to an aggregate signa, e.g., which value (0 or
1) was in the majority for the last T; time steps, rather
than any detailed information he may have about other
specified agents. It is not unexpected that an extended
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system with globally shared information can organize. A
basic question in studies of complexity is how large sys
tems with only local information available to the agents
may become complex through a self-organized dynamical
process.

Here we explicitly consider the network of interconnec-
tions between agents, and for simplicity exclude al other
effects. We represent agents in a market as a random net-
work of interconnected Boolean elements under mutual in-
fluence, the so-called Kauffman network [1,7]. The market
payoff takes the form of a competitive game. The perfor-
mance of the individual agents is measured by counting
the number of times each agent is in the mgjority. Af-
ter a time scale, defining an epoch, the worst performer,
who was in the majority most often, changes his strategy.
The Boolean function of that agent is replaced with a new
Boolean function chosen at random, and the process is re-
peated indefinitely. Note that it is not otherwise indicated
to the agents what is rewarded, i.e., being in the minority.
The agents are given only their individual scores and oth-
erwise play blindly; they do not know directly that they are
rewarded by the outcome of a minority game, unlike the
original minority game model.

We observe that, irrespective of initial conditions,
the network ultimately self-organizes into an intermittent
steady state at a borderline between two dynamical phases.
This border may correspond to an “edge of chaos’ [1].
In some epochs the dynamics of the network takes place
on a very long attractor, while, otherwise, the network
is either completely frozen or the dynamics is localized
on some attractor with a smaller period. More precisely,
numerical simulation results indicate that the distribution
of attractor lengths in the self-organized state is broad,
with no apparent cutoff other than the one that must
be numerically imposed, and consistent with power-law
behavior for large enough attractor lengths. A single
agent’s change of strategy from one epoch to the next
can cause the entire network to flip between attractors of
vastly different lengths. Thus the network can act as a
switch.

© 2000 The American Physical Society 3185



VOLUME 84, NUMBER 14

PHYSICAL REVIEW LETTERS

3 APRIL 2000

Consider a network of N agents where each agent is
assigned a Boolean variable o; = Oor 1. Each agent
receives input from K other distinct agents chosen at
random in the system. The set of inputs for each agent i
is quenched. The evolution of the system is specified by
N Boolean functions of K variables, each of the form

oi(t + 1) = filo, (1), 03, (1), ... 03, (1)]. D

There exist 22* possible Boolean functions of K variables.
Each function is a lookup table which specifies the binary
output for agiven set of binary inputs. In the simplest case
defined by Kauffman, where the networks do not organize,
each function f; is chosen randomly among these 22° pos-
sible functions with no bias; we refer to this case as the
random Kauffman network (RKN).

We will now briefly review some facts about Kauffman
networks. First, a phase transition occurs on increasing K .
For K < 2 RKN starting from random initial conditions
reach frozen configurations, while for K > 2 RKN reach
attractors whose length typically grows exponentialy
with N and are called chaotic. RKN with K = 2 are
critical and the distribution of attractor lengths that the
system reaches, starting from random initial conditions,
approaches apower law [8], for large enough system sizes,
when averaged over many network realizations. Thisphase
transition in the Kauffman networks can also be observed
by biasing the random functions f; so that the output
variables switch more or less frequently if the input
variables are changed. Boolean functions can be charac-
terized by a “homogeneity parameter” P which represents
the fraction of 1's or 0's in the output, whichever is the
majority for that function. In general, on increasing P &t
fixed K, a phase transition is observed from chactic to
frozen behavior. For K < 2 the unbiased, random value
happens to fall above the transition in the frozen phase,
while for K = 3 the opposite occurs [1]. Kauffman
networks are examples of strongly disordered systems
and have attracted attention from physicists over the years
(see, for example, Refs. [9—-11]). Note that the phase
transition previously observed in Kauffman networks
arises by externally tuning parameters such as P or K.

We consider random Boolean networks of K inputs, and
with lookup tables chosen independently from the 22* pos-
sibilities with equal probability. With specified initial con-
ditions, generally random, each agent is updated in parallel
according to Eq. (1). The agents are competing against
each other and at each time step those in the minority win.
Thus there is a penalty for being in the herd. One may
ascribe to agents a reluctance to change strategies. Only
in the face of long-term failure will an agent overcome
his barrier to change. In the limiting case of high barriers
to change, the time scale for changing strategies will be
set by the poorest performer in the network. The change
of strategies is approximated as an extremal process [12]
where the agent who was in the majority most often over a
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long time scale, the epoch, is chosen for “Darwinian” se-
lection. In our simulations, the network was updated until
either the attractor of the dynamicswasfound, or the length
of the attractor was found to be larger than some limiting
value which was typically set at 10000 time steps, solely
for reasons of numerical convenience. The performance of
the agents was then measured over either the attractor or
the portion of the attractor up to the cutoff length.

The Boolean function of the worst player is replaced
with a new Boolean function chosen completely at ran-
dom with equal probability from the 22 possible Boolean
functions. If two or more agents are the worst perform-
ers, one of them is chosen at random and changed. The
performance of all the agents is then measured in the new
epoch, and this process is continued indefinitely. Note that
the connection matrix of the network does not evolve; the
set of agents who are inputs to each agent is fixed by the
initial conditions.

Independent of initial conditions, a K = 3 network
evolves to a tatistically stationary but intermittent state,
shown in Fig. 1. Initially the attractors that the system
reaches are always very long, consistent with all previous
work on Kauffman networks. But after many epochs of
selecting the worst strategy, short attractors first appear
and a new dtatistically stationary state emerges. In this
figure we roughly characterize an attractor as “chaotic” or
long if its length is greater than [ = 10000 time steps.
On varying [ a similar picture is obtained aslong as [ is
sufficiently large to distinguish long period attractors from
short period ones. In the stationary state, one observes
that the network can switch behaviors on changing a
single strategy. Intriguingly, Kauffman initially proposed
random Boolean networks as simplified models of genetic
regulation where it is known that switches exist and are
an important aspect of genetic control [13].

To be more precise, the histogram of the distribution of
the lengths of the attractor in the self-organized state was
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FIG. 1. Time series of the length of attractor in each epoch for
K =3, N =999 in the stationary state.
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measured as shown in Fig. 2 for different system sizeswith
the same numerically imposed cutoff /. The apparent peak
at small periodsisdueto therelative presence or absence of
prime numbers, and numbers which can be factored many
ways. The last point represents all attractors larger than
our numerically imposed cutoff 10000, which is why a
bump appears. In between these two regions, the behav-
ior suggests a power law, P, (t) ~ 1/t asymptoticaly, as
is the case at the phase transition in RKN [8]. If we in-
crease or decrease our numerically imposed cutoff, then
the bump at [ correspondingly moves left or right and the
intermediate region expands or contracts, both consistent
with the power law. Also the power law behavior becomes
more apparent for increasing system size suggesting that
the self-organized state we observed is not merely an ef-
fect of finite system size, but becomes more distinct as the
system size increases.

The process of evolution towards the steady state is
monitored by measuring the average value of the homo-
geneity parameter P in the network from epoch to epoch.
As shown in Fig. 3, for K = 3, the average value of P
tends to increase from the random value set by the initial
conditions during the transient. For finite N, there arefluc-
tuationsin P inthe steady state, aswell asfinite size effects
in the average value (P). For N = (99,315,999,3161)
we measured an average value in the steady state (P) =
(0.656(1),0.664(1),0.669(1),0.671(1)) and root-mean-
sguare fluctuations AP, = (0.015,0.007,0.004, 0.001).
These numerical results suggest that in the thermody-
namic limit N — o, P is approaching a unique value
P. = 0.672. This value is below the P. = 0.792438
[14,15] of random Kauffman K = 3 networks, but is
many standard deviations away from the initial value.

The dynamica state that the system evolves toward is
different from the phase transition of Kauffman networks
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FIG. 2. Histogram of attractor lengths for K = 3 networks.
The dashed line has a slope of 1.

in other (less trivial) ways. In particular, the phase tran-
sition in RKN is a freezing transition where most ele-
ments do not change state. Only a few elements, strictly
[<O(N)], are changing state [1,14] at the phase tran-
sition of RKN, whereas in our self-organized networks
there can be short attractors associated with many ele-
ments [~ O (N)] changing state. This can occur only if
the Boolean tables in the network become correlated by
the evolutionary process, which, by construction, is not al-
lowed for RKN. Thusour initially chaotic networks are not
freezing as in Kauffman networks at the phase transition,
but are somehow phase locking many elements together.

The distribution of performances of agents in the net-
work fluctuates a great deal from epoch to epoch. The
performance is measured by counting the fraction of times
each agent isin the majority. In the case where the network
has period one, there are obviously two peaks, one corre-
sponding to the group always in the minority and the other
corresponding to the group always in the mgjority. In fact
we find that even on the long attractors encountered in the
steady state, typically a significant fraction of the agents
are frozen. The number of these frozen agents fluctuates
from epoch to epoch.

Figure 4 is a histogram of performances for agents in
a self-organized network in a particular epoch which had
a period greater than 10000. Note that the relative per-
formances vary considerably. The two peaks represent the
frozen agents. Asindicated in the figure, the frozen agents
are typically divided between the two states unevenly. In
any given instant, despite the uneven division between the
frozen agents, the total number of agents in the two states
(0,2) is amost evenly divided with fluctuations that are
much smaller than in RKN. Active agents, who are chang-
ing their state in response to the inputs of others, comprise
the remainder of the histogram outside of the two peaks.
As shown in this figure, some agents who are inflexible
and do not respond to their environment perform better
than some agents who respond to their changing inputs
and change states. This suggests that somehow the losers
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FIG. 3. Self-organization of the homogeneity parameter P for
the same network as in Fig. 1. The dashed line corresponds to
the unbiased random value.
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FIG. 4. Histogram of performances in a particular epoch, for
N =999 and K = 3 in the self-organized state. Those with
high scores are poor performers.

are being exploited by some information traveling in the
network that they respond to. Also, somewhat counterin-
tuitively, alarge group of agents who take the same action,
corresponding to theleft-hand peak, can compete very well
in spite of the fact that the minority game tends to punish
herd behavior.

Although we currently have no adequate theoretical de-
scription of our numerical observations, we can still dis-
cuss, to some extent, the generality and robustness of our
results. First, if, instead of changing the entire Boolean
table of the worst performer, just one element in it is
changed, the self-organization process still takes place. If
on the other hand, the Boolean function of the worst per-
former and those who receive input from it are changed, no
self-organization takes place. Of course it does not make
sense to change the Boolean functions of the agents who
listen to the worst performer because in our context the
barrier to changeisan internal function of the performance
for each individual. The precise behavior on varying K is
not determined at present. For K = 6, we have simulated
systemswith N = 99 aslong as 10° epochs, and never ob-
served the system to reach any frozen state when starting
from a random, unbiased state in the chaotic phase, so it
is possible that the self-organization process as described
here using completely random tables does not occur for
high enough K.

However, other significant modifications were done
where the self-organization process survives. For ex-
ample, if, instead of changing the Boolean tables of the
worst performer, we keep the Boolean tables fixed at their
initial state, but change the inputs for the worst performer
by rewiring the network, then the K = 3 networks still
self-organize to a similar state at an “edge of chaos’
with similar statistical properties for the periods of the
attractors and performances of the agents. This occurs
despite the fact that in this case the average homogeneity
parameter P of the network cannot evolve.
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Rather than define an arbitrary fitness, and select those
agents with lowest fitness, an approach that was used by
Bak and Sneppen [12], to describe coevolution, we elimi-
nate the concept of fitness and define a performance based
on a specific game. Clearly if the agents are rewarded
for being in the mgjority, then the behavior of the system
is completely trivial; the agents gain by cooperating in-
stead of competing and the network is driven deep into the
frozen phase. This naturally raises the question of which
types of games lead to self-organized complex states. In
our model, selection of agents in the majority for random
change tends to increase the number in the minority. Even
in the absence of interactions, eventually those in the mi-
nority would become the mgjority and lose. We suspect
that, in general, the game must make agents compete for
a reward that depends on the behavior of other agents in
a manner that intrinsically frustrates any group of agents
from permanently taking over and winning. This frustra-
tion may be an essential feature of the dynamics of many
complex systems, and our model may beinterpreted as, for
instance, describing an ecosystem of interacting and com-
peting species.
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