
VOLUME 84, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 3 APRIL 2000
Spontaneous Plaquette Dimerization in the J1–J2 Heisenberg Model
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We investigate the nonmagnetic phase of the spin-half frustrated Heisenberg antiferromagnet on the
square lattice using exact diagonalization (up to 36 sites) and quantum Monte Carlo techniques (up to
144 sites). The spin gap and the susceptibilities for the most important crystal symmetry breaking op-
erators are computed. A genuine and somehow unexpected “plaquette resonating valence bond,” with
spontaneously broken translation symmetry and no broken rotation symmetry, comes out from our nu-
merical simulations as the most plausible ground state for J2�J1 � 0.5.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.40.Mg
The nature of the nonmagnetic phases of a quantum anti-
ferromagnet is a topic of great interest and has been a
subject of intense theoretical investigation since Ander-
son’s suggestion [1] about the possible connections with
the mechanism of high-Tc superconductivity.

Within the Heisenberg model the simplest way in which
the antiferromagnetism can be destabilized is by introduc-
ing a next-nearest-neighbor frustrating interaction leading
to the so-called J1 J2 Hamiltonian

Ĥ � J1

X

n.n.
Ŝi ? Ŝj 1 J2

X

n.n.n.
Ŝi ? Ŝj , (1)

where Ŝi � �Ŝx
i , Ŝ

y
i , Ŝz

i � are spin- 1
2 operators on a square

lattice. J1 and J2 are the (positive) antiferromagnetic su-
perexchange couplings between nearest and next-nearest-
neighbor pairs of spins, respectively. In the following we
will consider finite clusters of N sites with periodic bound-
ary conditions (tilted by 45± only for N � 32).

Although there is a general consensus about the disap-
pearance of the Néel order in the ground state (GS) of the
present model for 0.38 & J2�J1 & 0.60 [2–4], no definite
conclusion has been drawn on the nature of the nonmag-
netic phase yet. In particular, an open question is whether
the GS of the J1 J2 Heisenberg model is a resonating va-
lence bond (RVB) spin liquid with no broken symmetries,
as it was originally suggested by Figueirido et al. [5]. The
other possibility is a GS which is still SU(2) invariant, but
nonetheless breaks some crystal symmetries, dimerizing in
some special pattern [6–11].

In this Letter we address this point using exact diago-
nalization (ED) and a quantum Monte Carlo technique, the
Green function Monte Carlo (GFMC), which allows the
calculation of GS expectation values on fairly large system
sizes �N # 144�. This is extremely important to draw rea-
sonable conclusions on the physical thermodynamic, zero
temperature properties of the model.

For frustrated spin systems as well as for fermionic mod-
els, quantum Monte Carlo methods are affected by the
so-called sign problem that can be controlled, at present,
only at the price of introducing some kind of approxima-
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tions, such as the fixed node (FN) one [12]. In this work
we have also extensively used a recently developed tech-
nique, the Green function Monte Carlo with stochastic re-
configuration (GFMCSR), which improves systematically
the accuracy of the FN approximation for GS calculations
[4,13–15].

The FN method allows us to work without any sign
problem by using the following simple strategy: The exact
imaginary time propagator e2tĤ —used to filter out the
GS from the best variational guess jcG�—is replaced by
an approximate propagator e2tĤFN such that the nodes of
the propagated state e2tĤFN jcG� do not change, due to an
appropriate choice of the effective FN Hamiltonian ĤFN
(which in turn depends on jcG�). The FN approximation
becomes exact if the so-called guiding wave function jcG�
is the exact GS. However, for frustrated spin models even
the best variational wave function of the Jastrow type [4],
used to guide the FN dynamic, provides rather poor results
even for the GS energy expectation value [4,13,14].

The GFMCSR method allows us to release the FN ap-
proximation and to obtain results much less depending on
the quality of the guiding wave function. During each short
imaginary time evolution t ! t 1 Dt, where both the
exact and the approximate propagations can be performed
without sign problem instabilities, the FN dynamic is sys-
tematically improved by requiring that a given number p
of mixed averages [13] of correlation functions is propa-
gated consistently with the exact dynamic. By increasing
the number of correlation functions one typically improves
the accuracy of the calculation since the method becomes
exact if all the independent correlation functions are in-
cluded in the stochastic reconfiguration (SR) scheme.

Typically [4,14], few correlation functions �p � 10�
allow us to obtain rather accurate values of the GS en-
ergy with an error much less than 1%—for lattice sizes
�N # 36� where the exact solution is available numeri-
cally—and without a sizable loss of accuracy with increas-
ing size. Such accuracy is usually enough to reproduce
some physical features that are not contained at the varia-
tional level, as has been shown in a previous study of the
present model [4]. In the latter work, in fact, with a gapless
© 2000 The American Physical Society 3173
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guiding wave function, it has been possible to detect a fi-
nite spin gap in the thermodynamic limit for J2�J1 * 0.4.

We have extended the previous GFMCSR calculation,
with the same guiding wave function of Ref. [4], by includ-
ing in SR conditions not only the energy and all Ŝz

i Ŝz
j inde-

pendent by symmetry, but also the antiferromagnetic order
parameter. The latter, as discussed in Ref. [13], though not
improving the accuracy of the calculation, allows a very
stable and reliable simulation for large p. The new results,
extended up to N � 144, confirm the previous findings of
a finite spin gap for J2�J1 * 0.40 (Fig. 1).

As suggested in Refs. [8,9,11,17], in order to investigate
the possible occurrence of a spontaneously dimerized GS
displaying some kind of crystalline order, we have calcu-
lated the response of the system to operators breaking the
most important lattice symmetries. This can be done by
adding to the Hamiltonian (1) a term 2dÔ, where Ô is
an operator that breaks some symmetry of Ĥ. On a finite
size, the GS expectation value of Ô vanishes by symme-
try for d � 0, and the GS energy per site has corrections
proportional to d2 as by the Hellmann-Feynman theorem
2de�d��dd � �Ô�d�N . Therefore e�d� � e0 2 xd2�2,
being x the generalized susceptibility associated to the
operator Ô, namely, x � 2�c0jÔ�E0 2 Ĥ�21Ôjc0��NJ1.
For N ! `, if true long range order (LRO) exists in the
thermodynamic GS, an infinitesimal field d � 1�N must
give a finite �Ô�d�N � xd implying that the finite size
susceptibility x � �Ô�d�dN has to diverge with the sys-
tem size [18]. Thus susceptibilities are a very sensitive tool
for detecting the occurrence of LRO.

We have considered the response of the system to the
following symmetry breaking operators:

ÔC �
X

i

�Ŝi ? Ŝi1x 2 Ŝi ? Ŝi1y� , (2)

ÔP �
X

i

eiQ0?ri Ŝi ? Ŝi1x , (3)

FIG. 1. Size scaling of the energy gap to the first S � 1 spin
excitation obtained with the GFMCSR technique for J2�J1 �
0.38 (full triangles), 0.45 (full squares), and 0.50 (full circles).
Data for the unfrustrated �J2 � 0� Heisenberg model taken from
Ref. [16] are also shown for comparison (empty circles). Lines
are weighted quadratic fits of the data.
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with x � �1, 0�, y � �0, 1�, and Q0 � �p, 0�, for the
rotation and the translation symmetry, respectively.
Within ED and GFMC technique the susceptibility x �
2d2e�d��dd2jd�0 can be evaluated by computing the
GS energy per site in presence of the perturbation for
few values of d, and by estimating numerically the limit
d ! 0 of the quantity x�d� � 22�e�d� 2 e0	�d2.

As we have tested in the one dimensional J1 J2 model,
the numerical study of LRO by means of x�d� is very
effective and reliable. Here a quantum critical point at
J2�J1 � 0.2412 separating a gapless spin fluid phase from
a gapped dimerized GS, which is twofold degenerate, is
rather well accepted [19–21]. As shown in Fig. 2, the re-
sponse of the system to the perturbation dÔP [Eq. (3)],
breaking the translation invariance with momentum k �
p , is very different below and above the dimer-fluid tran-
sition point. However, it is extremely important to perform
very accurate calculations at small d to detect the diver-
gence of the susceptibilities for large system sizes.

In two dimensions, among the dimerized phases pro-
posed in the literature, the so-called columnar and pla-
quette RVB [6–11] are the states which have obtained the
most convincing numerical evidences. Both the colum-
nar and plaquette RVB break the translation invariance but
only the latter preserves the rotation symmetry. As also
suggested in a recent paper by Singh et al. [11], the ap-
pearance of a columnar state can be tested by using as
order parameter the operator ÔC defined in Eq. (2). As
shown in Fig. 3, the ED results for N � 16 and N � 36
indicate that the susceptibility associated with this kind of
symmetry breaking, xC , decreases with the system size.
Using the GFMCSR, described before, we have extended
the calculation up to N � 64. The GFMCSR calculations,
which reproduce pretty well the ED data, rule out clearly
the columnar dimer order.

The above result is in disagreement with the conclusions
of several series expansion studies [7,10,11]. However,
as stated in Ref. [11], the series for xC is very irregular

FIG. 2. ED results for the J1 J2 chain: xP�d� associated
with the operator ÔP (breaking the translational invariance)
for J2�J1 � 0.2 (a) and J2�J1 � 0.4 (b). Data are shown for
N � 12, 14, 16, 20, 24, and 30 for increasing values of xP�d�.
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FIG. 3. Exact and GFMCSR calculations of xC�d� associated
with ÔC (columnar dimerization) for J2�J1 � 0.5.

and does not allow a meaningful extrapolation to the exact
result. In our calculation instead, even the ED results for
N # 36 are already conclusive.

Having established that the columnar susceptibility is
bounded, it is now important to study the response of the
J1 J2 model to a small field coupled to the perturbation
ÔP of Eq. (3), breaking the translation invariance of the
Hamiltonian. The evaluation of xP , with a reasonable
accuracy, is a much more difficult task. In fact, in this
case the ED values of the susceptibility for N � 16 and
N � 32 increase with the size, and much more effort is
then required to distinguish if this behavior corresponds to
a spontaneous symmetry breaking in the thermodynamic
limit. As is shown in Fig. 4(a), the FN technique, starting
from a guiding wave function without dimer order, is not
able to reproduce the actual response of the system to ÔP ,
even on small sizes. The GFMCSR technique allows us
to get an estimate of the susceptibility which is a factor
of 3 more accurate, but not satisfactory enough. In order
to improve this estimate, we have attempted to include in
the SR conditions many other, reasonably simple, corre-
lation functions (such as the spin-spin correlation func-

FIG. 4. xP�d� associated to ÔP (plaquette dimerization) for
J2�J1 � 0.5, N � 32 (a), N � 64 (b), and N � 100 (c). FN
(empty squares), GFMCSR (full squares), FN with LS (empty
circles), GFMCSR with LS (full circles), and exact (empty
triangles).
tions Ŝi ? Ŝj for jri 2 rjj .
p

2 ), but without obtaining
a sizable change of the estimate of xP . In fact, the most
effective SR conditions are those obtained with operators
more directly related to the Hamiltonian [13,14].

After many unsuccessful attempts, we have realized that
it is much simpler and straightforward to improve the ac-
curacy of the guiding wave function itself. In fact, it is
reasonable to expect that both the FN and the GFMCSR
will perform more efficiently with a better jcG�, i.e., with
an improved initial guess of the GS wave function. This
can be obtained by applying a generalized Lanczos opera-
tor �1 1 aĤ� to the variational wave function jcG�, where
a is a variational parameter. This defines the so-called one
Lanczos step (LS) wave function, which has been particu-
larly successful for the t-J model [22].

In the present model by using the LS wave function,
a clear improvement on the variational estimate of the
GS energy is obtained. More importantly, as shown in
Fig. 4(a), the LS wave function allows a much better es-
timate of the susceptibility. Remarkably, on all the finite
sizes where ED is possible, the GFMCSR estimate of this
important quantity is basically exact within a few error bars
(see also Fig. 5). This calculation was obtained by includ-
ing in the SR conditions the energy, the spin-spin correla-
tion functions up to next-nearest-neighbors, distinguishing
also Ŝz

i Ŝz
j and �Ŝx

i Ŝx
j 1 Ŝ

y
i Ŝ

y
j � �p � 4�. The mixed aver-

ages of these correlation functions can be computed over
both the wave function jcG� and the LS wave function
�1 1 aĤ� jcG� during the same Monte Carlo simulation.
Thus with a LS wave function one can also easily double
the number of constraints that are effective to improve the
accuracy of the method �p � 8�. In this case we have
tested that it is irrelevant to add further long range corre-
lation functions in the SR conditions even for large size.

FIG. 5. Exact (empty triangles) and GFMCSR (circles) calcu-
lations of xP�d� (plaquette dimerization) for J2�J1 � 0.5 and
(from the bottom) N � 16, 32, 36, and 64. Inset: numerical de-
termination of the order parameter (see text). Lines are guides
for the eye.
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By increasing the size, the response of the system is
very strongly enhanced, in very close analogy to the one
dimensional model in the dimerized phase [see Fig. 2(b)].
This is obtained only with the GFMCSR technique, since
as shown in Fig. 4, the combination of FN and Lanczos
step alone is not capable to detect these strongly enhanced
correlations. For N � 100 the GFMCSR increases by
more than 1 order of magnitude the response of the system
to the dimerizing field. This effect is particularly striking,
considering that the starting guiding wave function is spin
wave like [23], i.e., gapless, Néel ordered, and without
any dimer LRO. This suggests that all our systematic
approximations are able to remove almost completely even
a very strong bias present at the variational level.

We believe that the numerical results we have presented
here give a very robust indication of a spontaneous dimer-
ization with broken translation symmetry but without
broken rotation symmetry (as discussed before), i.e., a
plaquette RVB. This kind of state can be thought of as a
collection of rotation invariant valence bond states

where j± ±� � j "#� 2 j #"�. Such plaquettes cover only
one-half of the possible elementary plaquettes of the lat-
tice since two plaquettes cannot have a common side. In
this way one necessarily has to break translation invariance
and the resulting GS is fourfold degenerate in the thermo-
dynamic limit, in agreement with the Haldane’s hedgehog
argument described in Ref. [24].

In the past, among several attempts to guess the nature
of the nonmagnetic phase of this model, the description
closest to ours was that proposed by Zithomirski and Ueda
[9]. Amazingly, part of their conclusions were based on
an unfortunate mistake in the series expansion [11].

The quantitative estimate of the order parameter can be
obtained by taking first the thermodynamic limit N ! `

of the order parameter OP�d� � �Ô�d�N at fixed field d,
and then letting d ! 0, limd!0 OP�d� � OP being the
value of the order parameter. In order to estimate OP�d� at
fixed size we have used the Hellmann-Feynmann theorem
with a finite difference estimate of 2de�d��dd � �e�0� 2

e�d�	�d. As shown in the inset of Fig. 5, the finite size ef-
fects of this quantity seem to saturate above the N � 64
lattice size for d $ 0.04, allowing a rather convincing es-
timate of the dimer order parameter as OP � 0.1, being
3176
sizably nonzero. The sharp crossover of the size effects for
N $ 64 is due to the presence of a finite triplet gap in the
excitation spectrum (Fig. 1), implying, typically, a finite
characteristic length. The value of the order parameter OP

is rather large considering that J2�J1 � 0.5 is very close
to the transition point for the onset of spontaneous dimer-
ization J2�J1 � 0.40. This is an interesting and measur-
able physical property that can be, in principle, investigated
experimentally.
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