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Bose-Einstein Condensation and Spatial Correlations in 4He
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A new Monte Carlo method for calculating ground-state properties of liquid 4He is described. It is
shown that Bose-Einstein condensation (BEC) implies delocalization of the wave function. It is shown
that there is no general connection between the static structure factor and BEC. It is suggested that
the observed connection in liquid 4He is due to the creation of spaces in the liquid structure, which are
required so that the wave function can delocalize, in the presence of the hard-core interactions. It is
shown that this suggestion is quantitatively consistent with observations on liquid 4He.

PACS numbers: 67.40.Db, 61.12.Bt
Neutron [1,2] and x-ray [3] scattering measurements of
the static structure factor S �q in 4He show highly anomalous
behavior. In contrast to other liquids, where spatial corre-
lations between the positions of different atoms increase
as the temperature is lowered, spatial correlations in liquid
4He are reduced as the temperature of the liquid is lowered
below the superfluid transition. It was suggested by Hy-
land et al. [4,5] in 1970 that the static structure factor SN

�q

of 4He just above the l transition and the corresponding
function SS

�q in the superfluid are related by

�SS
�q 2 1� � �1 2 f�2 �SN

�q 2 1� , (1)

where f is the fraction of atoms occupying the Bose-
Einstein condensate (BEC). At a qualitative level the ori-
gin of this behavior was attributed to the delocalization of
atoms in the condensate, so that these atoms do not con-
tribute to pair correlations.

Subsequent experimental work has suggested that
Eq. (1) is at least approximately satisfied in 4He. Values
of f obtained via Eq. (1), from neutron [1,2,6] and x-ray
[3] measurements of the temperature and pressure depen-
dence of S �q in 4He, agree to within a factor of �50%
with neutron Compton scattering measurements [7–9]
and theoretical calculations [10–12] of f. However, the
derivation Hyland et al. gave for Eq. (1) is not generally
accepted. Griffin [13] has questioned the validity of their
assumptions and Fetter [14] has given a counterexample
to Eq. (1), based on the properties of a weakly interacting
Bose gas at low temperatures. Equation (1) is not obeyed
by the variational calculations of Masserini et al. [15].
The excitation of rotons has also been proposed as an
alternative explanation for the increase in spatial correla-
tions as the temperature is raised in the superfluid phase
[16–19].

In this paper, a new approach to this problem is taken.
We consider the constraints placed on the form of the
many-particle Schrödinger wave function by a BEC and
how these constraints will affect S �q. It will be argued that
the link between spatial correlations and f in 4He is a ge-
ometrical consequence of the hard-core repulsion between
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atoms and that the apparent validity of Eq. (1) is a coinci-
dence, due to the particular hard-core radius and number
density in liquid 4He.

Denoting the coordinates of an arbitrarily chosen par-
ticle as �r and those of the N 2 1 other particles as �s, the
“conditional wave function” c��r j �s� is defined in terms of
the N-particle wave function C��r , �s� [20,21] as

c��r j �s� � C��r , �s��
q

P��s� , (2)

where

P��s� �
Z

jC��r , �s�j2 d �r . (3)

The essential feature of c��r j �s� is that it describes the �r
dependence of the many-particle wave function C��r , �s� at
fixed �s and its introduction could be regarded simply as
a notational device. However, as shown previously [20],
in the context of this problem c��r j �s� can be formally
treated as the wave function of a single particle, for a
given configuration �s of all other particles. For example,
jc��r j �s�j2 is the conditional probability density in space
and the conditional momentum distribution n �p��s� is

n �p��s� �

ÇZ
c��r j �s� exp�i �p ? �r� dr

Ç2
. (4)

The probability that an arbitrary particle is in a momen-
tum state �p is n �p�V , where V is the total sample vol-
ume. n �p is a weighted average over configurations �s,
n �p �

R
P��s�n �p��s� d �s, where P��s� is the probability dis-

tribution of �s. One can also derive an expression for the
total energy of the form E �

R
P��s�E��s� d �s, where

E��s� �
1
V

X
�p

p2

2M
n �p��s� 1

Z
jc��r j �s�j2V ��r , �s� d �r .

(5)

This formalism allows for a new method for Monte Carlo
optimization of many-particle variational wave functions.
Given functional forms of V ��r , �s� and C��r , �s�, randomly
generate configurations �s, calculate P��s� via Eq. (3), E��s�
via Eq. (5), and E as a weighted average over �s. Variational
parameters can be optimized by minimizing E. Similar
methods are already in use [22], but it seems possible
that the method outlined here would offer an increase in
© 2000 The American Physical Society
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computing efficiency, since the calculation of E��s� is a
one-particle problem and fast Fourier transforms can be
used to calculate the kinetic energy.

In order to illustrate the use of the Monte Carlo method
and also the physical content of the formalism, the simple
hard-core wave function first introduced by Feynman [23]
is used. This is defined to be zero if any two particles
approach within a distance 2a, corresponding to the
overlap of two hard spheres of radius a. C��r, �s� and
hence P��s� have the same value for all �r, �s, for which no
two particles are closer than 2a. The conditional wave
function c��r j �s� [20] is zero within exclusion spheres of
radius 2a centered at the positions �s and has uniform
amplitude within the rest of the volume. Configurations
of N nonoverlapping spheres were generated numerically
within a cubic volume V, using a random number genera-
tor. The simulation was made on a cubic array, of side
128 pixels, with periodic boundary conditions and with
each sphere having a diameter of 16 pixels. N � 191 was
chosen so that the ratio Na3�V was the same as in 4He at
saturated vapor pressure (SVP) and T � 0. (a � 1.28 Å
and V�N � 46.2 Å.) c��r j �s� was generated by setting
all pixels outside the exclusion spheres of radius 2a to
the same value, which was determined by numerical
normalization of c��r j �s�. The momentum distribution
n �p��s� and the condensate fraction f��s� � n0��s��V were
calculated from Eq. (4). [In fact, it can be shown [20]
that for this model, the calculation of f��s� reduces to the
conceptually simple geometrical problem of finding the
fraction of the total volume, which could be occupied by
the center of the particle of interest, without hard-core
overlap with other spheres centered at positions �s.]

The results of 20 000 simulations, with different ran-
domly generated �s, were binned as a function of f��s� and
are shown in Fig. 1. The mean value obtained for f��s�
is f � 0.085, very close to the value �0.08 obtained by
Penrose and Onsager [24] with the same model but by an
entirely different method of calculation. The peak shape
in Fig. 1 becomes closely Gaussian at large N, with a
width proportional to 1�

p
N and in a macroscopic system,

FIG. 1. The distribution of f��s� values calculated for
191 spheres, with a sample of 20 000 simulations. The solid
line is a Gaussian with the same mean and second moment as
the data.
the condensate fraction will be very precisely defined and
independent of the precise microscopic configuration �s.
Figure 2 shows the calculated longitudinal momentum dis-
tribution J�u�.

J�u� �
Z

np�u, py , pz� dpxdpy . (6)

Comparing with the calculations of Ceperley [25], shown
as the dashed line, shows that this crude model gives a rea-
sonably good description of both the condensate fraction
and n �p . The general conditions imposed upon the wave
function by the presence of BEC can be understood by
using the Wiener-Kintchine theorem [26] and expressing
n �p��s� as

n �p��s� �
Z

A��r j �s� exp�i �p ? �r� dr , (7)

where A��r j �s� is the autocorrelation function of c��r j �s�,

A��r j �s� �
Z

c��r 0 j �s�c���r 1 r 0 j �s� d �r 0. (8)

The inverse relation to (7) is

A��r j �s� �
1
V

X
�p

n �p��s� exp�2i �p ? �r� . (9)

When a BEC is present, then on average n0��s��V � f and
A��r j �s� � f fi 0 as j�rj ! `. This has two implications
for the form of c��r j �s� [27], in the limit V ! `.

(1) c��r j �s� is delocalized and must extend with
nonzero amplitude over length scales � 3

p
V . For example,

if c��r j �s� � 0 outside any sphere of radius L, then
A��r j �s� � 0, for j�rj . 2L.

(2) c��r j �s� must be phase coherent over length scales
� 3
p

V . For example, if the phases of c��r 0 j �s� and
c��r 0 1 �r j �s� are uncorrelated for j�rj . L, then the
product c��r 0 j �s�c���r 0 1 �r j �s� has random phase and the
integral in Eq. (8) averages to zero for j�rj . L. The wave
function used to generate Figs. 1 and 2 satisfies both these

FIG. 2. The solid line shows the J�u� calculated from the
hard-core model. The sharp central peak is the condensate peak.
The dashed line shows the noncondensate component of J�u�,
calculated by the path integral Monte Carlo method [25]. The
dotted line was calculated from a phase incoherent wave func-
tion, as described in the text.
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conditions and hence produces a sharp condensate peak
at �p � 0. It is worth noting that these two conditions
imply that angular momentum must be quantized on
macroscopic length scales and hence that BEC implies
superfluidity [20].

S �q can also be expressed in terms of the many-particle
wave functions Ci��rN �:

S �q �
1
N

X
m,n

X
i

Bi

Z
jCi��rN �j2 exp�i �q ? ��rm 2 �rn�� d �rN ,

(10)

where Bi is the thermal probability that state i is occupied
and �rN denotes the coordinates of the N particles. It can
be seen from Eq. (10) that S �q depends only on jC��rN �j2
and hence is completely insensitive to the phase of C��rN �.
It immediately follows that there is no general connection
between S �q and f, since f is sensitive to the phase of C��rN �,
whereas S �q is not. In fact, from a C��rN � which gives a
finite condensate fraction f, one can construct a class of
wave functions Ce��rN �, which give no BEC, but precisely
the same S �q. This can be achieved by the prescription

Ce��rN � �
NY

n�1

exp�if��rn��C��rN � , (11)

where f��r� is any function such that exp�if��r�� and
exp�if��r 0�� have uncorrelated phases for j�r 2 �r 0j ! `.
Since jC��rN �j2 � jCe��rN �j2, C��rN � and Ce��rN � give the
same S �q. However, it follows from Eq. (2) that, apart from
a factor independent of �r, the conditional wave function
corresponding to Ce��rN � is

ce��r j �s� � exp�if��r��c��r j �s� . (12)

From the definition of f��r�, it follows that ce��r j �s� does
not have long range phase coherence in �r for any �s and
Ce��rN � violates condition (2) for BEC. Hence Ce��rN �
gives no BEC. This is illustrated in Fig. 2, where the
dotted line was generated by randomly stepping the phase
of the wave function used to generate the solid line, by
62p�m in adjacent pixels along the x axis, with m � 10.
The phase undergoes a random walk in one dimension
and there is no phase correlation between points separated
by more than �m2 � 100 pixels. Thus there is no sharp
condensate peak.

In order to show how a link between S �q and f may arise
in 4He, consider a modification of the hard sphere model,
which was used to generate Figs. 1 and 2. Rather than
being randomly positioned within the volume V, the N
spheres were positioned on the sites of a regular lattice. For
each simulation there were NS � N��1 2 c� lattice sites,
with a fraction c of random vacancies, so that N sites were
occupied. The lattice constant d was scaled ~

3
p

1 2 c, so
that Na3�V was independent of c and equal to the value in
liquid 4He at SVP. Three different cases were considered:
a simple cubic lattice, a body centered cubic (bcc) lattice,
and a face centered cubic (fcc) lattice. As in the previous
model, c��r j �s� had uniform amplitude within the volume
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outside the hard-core exclusion spheres of radius 2a, cen-
tered at each occupied lattice site. The results of numerical
calculations of f, calculated from Eq. (3), as a function of
vacancy concentration c are shown in Fig. 3. For bcc and
fcc lattices f ! 0 as c ! 0, since the hard-core exclusion
spheres overlap to fill all of space. For these structures
there is no BEC, unless some lattice sites are unoccupied.

It is a simple matter to calculate S �q 2 1 as a function of
c for this model. The Bragg [28] scattering from a lattice
of NS sites, a fraction c of which are vacant, is proportional
to NS�1 2 c�2. Since NS � N��1 2 c�, it follows that the
Bragg intensity is proportional to 1 2 c. The lost intensity
appears as a constant incoherent background, which makes
no contribution to S �q 2 1. It follows that for this model
S �q 2 1 ~ 1 2 c. If the density and hard sphere radius are
such that the condition

f � 1 2
p

1 2 c (13)

is satisfied, then S �q 2 1 ~ �1 2 f�2 in agreement with
Eq. (1). Equation (13) is shown as the solid line in Fig. 3.
It can be seen that the calculations for all three lattices
lie close to this prediction, at the density and hard-core
radius of liquid 4He. However, the relationship between
c and f is very sensitive to the ratio of the lattice spacing
d and the hard sphere diameter 2a. Also shown in Fig. 3
are the calculated ratios between c and f for three different
values of the ratio 2a�d in a bcc lattice. It can be seen that
changing this ratio by only �10% moves the calculations
well away from the predictions of Eq. (1). The pressure
dependence of the link between c and f could be used to
test the mechanism proposed here. The triangles in Fig. 3
were calculated for a density corresponding to liquid 4He
at 25 bars.

The model clearly has many inadequacies, the most ob-
vious being that in liquid 4He, there is no long range or-
der. However, the geometrical arguments limiting the size

FIG. 3. The values of f calculated numerically as a function
of vacancy concentration c. The solid line is the prediction of
Eq. (13). Calculations with a hard-core radius of 2a � 2.56 Å
and a density V�N � 46.2 Å3; �: fcc lattice; 3: bcc lattice;
�: simple cubic lattice. �: calculation for a bcc lattice at
V�N � 38.9 Å3, corresponding to a pressure of 25 bars. The
dashed line was calculated for a bcc lattice, with 2a�d � 0.5
and the dotted line for 2a�d � 0.7. At the density of 4He at
SVP, 2a�d � 0.566.
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of the condensate factor depend only upon the local con-
figurations of atoms, surrounding a given atom. Providing
that this is approximately fcc or bcc, the limitations placed
on the size of f by the structure and hard sphere inter-
action will still apply. Furthermore, the random removal
of a fraction c of atoms will reduce S �q 2 1 by the fac-
tor �1 2 c�2 whether or not long range order is present.
Another approximation of the model is that c��r j �s� is a
constant in the regions of space outside the hard-core ex-
clusion spheres. It can be shown that f will be reduced
if c��r j �s� decreases more smoothly outside the exclusion
spheres. Thus in a more realistic model, the atoms must
be arranged so that at least a fraction f of the total volume
lies outside the hard-core exclusion spheres.

Probably the most serious approximation of the lattice
model is that the vacancies in the structure are produced
by randomly removing atoms. This implies that [29] S �q

contains a constant diffuse background of intensity c, in-
dependent of q and that S �q fi 0 as q ! 0, whereas in 4He
the Feynman relation [30] is obeyed. The model also pre-
dicts that the positions of peaks and troughs in S �q will
shift by �2%, due to the lattice contraction required to
keep N�V constant and this is not observed experimen-
tally. Both these undesirable features can be eliminated by
the assumption that, rather than random vacancies appear-
ing in a fixed structure, the structure distorts to create the
space necessary for BEC [29].

To summarize, in liquid 4He, the number density and
atomic hard-core diameter is such that for some atomic ar-
rangements (e.g., bcc or fcc local ordering), delocalization
cannot occur, due to a lack of space. It has been suggested
that the observed loss of spatial correlations in 4He is due
to a rearrangement of atoms, to create the necessary spaces
for delocalization to occur. The lattice model shows that
such a mechanism is quantitatively consistent with obser-
vations on 4He. However, the link between S �q and f is
very sensitive to the hard-core radius and number density
and the numerical agreement of Eq. (1) with experiment
in 4He is probably coincidental.
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