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Characterization and Mean-Field Modeling
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Dense branching morphologies (DBM) obtained in thin gap electrodeposition cells are characterized
by a dense array of branches behind a flat advancing envelope. In this Letter, we show the existence
in DBM of a new (porous) phase, qualitatively different from a (compact) metal deposit. The local
porosity inside the branches is found to be much more robust than geometric characteristics such as
the width or the distance between branches. This fact seems to be unreported in previous modeling of
DBM. A mean-field model is proposed that displays overall features observed in the experiments, such
as concentration profiles, front velocity, and branched internal structure.

PACS numbers: 81.15.Pq, 42.87.Bg, 61.43.Hv, 68.35.Rh
Electrochemical deposition (ECD) in thin cells pro-
vides, with a rather simple and elegant experimental setup,
for the observation of a wide variety of morphologies,
ranging from dense branching morphologies (DBM) [1]
to diffusion-limited aggregation (DLA)-like patterns.
Whereas DBM is characterized by a dense array of
branches defining a flat front advancing at constant
velocity, the DLA patterns display much more convolved
geometry, with a few branches screening the growth of the
others. Both can be included in the family of diffusion-
limited patterns [1], characterized by the fact that the
driving field satisfies the diffusion equation (Laplace’s
equation in the quasistationary limit) [2,3]. For instance,
viscous fingering [4], dielectric breakdown, and quasi-2D
combustion [5] fit into this description. In the following,
we focus on experimental conditions under which the
asymptotic regime is of DBM type and we develop an
original approach (based on a mean-field model) in order
to shed light on the morphological characteristics of these
patterns.

Several models have been proposed to interpret the
spatiotemporal dynamics observed in thin cell electro-
deposition. Despite the fact that DBM is not homogeneous
at small scales (Fig. 1), some aspects of the growth can be
well described by rather simple 1D models. For instance,
in Ref. [6], only the electric properties (transport of ions
by migration) of the cell are considered. The approaches
developed in [2,7] assume the local electroneutrality and
also include diffusion terms. In particular, they predict
the exponential falloff of the electrolyte concentration
close to the advancing deposit, in good agreement with
the experimental measurement of this profile [2]. Both
approaches correctly predict the velocity of the advancing
front as a function of the bulk electric field. However,
these 1D models remain very global and their extension
to the more realistic 2D situation is not obvious, and to
the best of our knowledge has not been carried out.

In a more general context, the mere existence of DBM is
somewhat puzzling, mainly because in the simplest growth
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models, the Mullins-Sekerka analysis [8,9] predicts the
instability of the long wavelengths (the shortest ones are
stabilized by some mechanism such as surface tension).
Several attempts have been made to extend the simplest
diffusion-limited growth model to account for the exis-
tence of DBM. In particular, the addition of dissipation
(resistance, in the electric analogy) in the branches [10–12]
fails to account for the stability of the planar front, and
a short diffusion length in the displaced region is neces-
sary to account for stable DBM growth [12]. However,
the model studied in [12] yields a t21�2 time dependence
of the front velocity, which has not been observed in gal-
vanostatic ECD. From an experimental view point Zik
et al. [5] analyzed the DBM obtained in electrodeposi-
tion experiments in light of experimental observations of
fingering instabilities in quasi-2D combustion. Following
this analogy they propose that the finger width (w) is cur-
rent independent and that the mean distance between them
is equal to the diffusion length lD ; we have shown that
this hypothesis does not match our experimental measure-
ments [13].

Another line of reasoning has been developed to un-
derstand the transition between DBM and dendritic pat-
terns, as observed in simulations of stochastic models of
diffusion-limited growth [14–16]. In particular, a mean-
field model [17] has been proposed to describe the aver-
aged properties of the overall probability distribution. It
includes previous modifications of the initial mean-field
model of Witten and Sander [18] as well as a generaliza-
tion of the sticking rule. Remarkably, DBM is observed
in this model when the 1D solution, uniformly extended
to 2D, is stable. Dendrites appear when there is no uni-
formly moving 1D solution. It will be shown below that
this mechanism for DBM fails to explain the morpholo-
gies observed in thin cell electrodeposition. More gen-
erally, all the previously mentioned models assume the
existence of two clearly defined phases. This is indeed
the case for solidification or quasi-2D combustion, but
in electrodeposition the existence of a porous phase is a
© 2000 The American Physical Society 3129
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FIG. 1. (a) DBM cluster with its surrounding concentration
field (contour lines with DC � C`�10), C` � �Cu�NO3�2� �
0.5 mol l21, j � 250 mA cm22. (b) Normalized metal concen-
tration in the deposit r1D�C` and normalized cation concentra-
tion C�C` in the electrolyte, plotted versus the space variable
x. r1D has been measured from the velocity y and the diffusion
length lD by the relation: r1D�C` � D���1 2 t1�ylD� [13].

qualitatively new fact that can be traced to a difference in
the boundary conditions at the growing interface: in solidi-
ficationlike systems, the value of the diffusive field has a
well-defined value at the interface, whereas in electrodepo-
sition, only the gradient is known. However, the averaged
metal concentration density of the deposit r1D of a steadily
moving interface is related to the bulk concentration C`

through the relation [2,6,7] r1D � C`��1 2 t1� � 2C`,
where t1 is the transference number of the cation. There-
fore, r1D is, for usual experimental conditions, much lower
than the concentration of the compact metal. This new in-
gredient makes DBM in electrodeposition fundamentally
different from previously reported DBM patterns and ex-
plains the inapplicability of previous theories. We now
turn to a description of the experimental results and the
mean-field model.

The experimental setup has been described in detail else-
where [2]. All of the experiments are performed at fixed
current density. The cells are made of two closely spaced
optically flat glass plates (l�4 over 50 3 50 mm2) con-
fining two straight parallel ultrapure metal wires (50 mm)
which are used as both spacers and electrodes. The spacing
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between the plates is fixed to 50 mm to get rid of natural
convection [3,19,20]. The concentration field is measured
in situ at each time, using a phase shift Mach-Zehnder in-
terferometer [2] together with the geometry of the deposit.
After the current is switched on, the cathodic interfacial
concentration begins to decrease, and very strong poten-
tial gradients appear at the interface. Very close to Sand’s
time (when the interfacial concentration goes to zero), the
interface becomes highly unstable [21] and develops into
a forest of fine spikes that organize into well-defined fin-
gers, as observed in Fig. 1(a). The interior of these fingers
is the result of a cascade of instabilities at the mm scale,
whereas the fingers themselves have a characteristic scale
of the order of 100 mm. In other words, the advancing
fingers are made of a “material” much more porous than
that of the compact deposit [Fig. 1(b)]. The distance l be-
tween branches is a macroscopic characteristic of the ECD
clusters; we propose in [13] a method for its estimation. l

is not invariant during the growth since it can change by
as much as a factor of 2 [13]. The same variability can
be observed from experiment to experiment (Fig. 2). This
situation is reminiscent of that found in directional solidi-
fication of alloys [22], where the same primary spacing be-
tween dendrites can be achieved with an imposed growth
rate that varies by 1 order of magnitude.

Another unrelated measurable quantity is the width w
of the branches, or, in an equivalent way, the fraction
u � w�l of the space occupied by the (porous) metallic
deposit. From our experimental study we conclude that
u has always a well-defined, current independent value
that linearly depends on the bulk concentration, contrary
to l. This implies that the fluctuations in l are necessarily
correlated with fluctuations in w, in such a way that u is
conserved and that the local concentration inside a finger
r � r1Du21 � C`��1 2 t1�u21 [13] is also conserved.
Therefore, the mm scale porosity inside the branches seems
much more robust than the value of l. We now introduce
a model that displays most of the experimentally observed
features.

This model involves three different fields: the concen-
tration of the electrolyte C�x, y, t�, the local density of the
deposit r�x, y, t�, and the local electric potential F�x, y, t�.

FIG. 2. Two DBM patterns with their respective concen-
tration fields obtained with the same experimental condi-
tions. �Cu�NO3�2� � 0.5 mol l21, j � 225 mA cm22, and
lD � 380 mm, width of the pictures 5 mm.
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The basic equations for C and r are essentially the same
as those of the “aggregate field” and “diffusive field” of
Ref. [17] except for the growth law which depends on the
local value of F. More precisely, the evolution equations
for C and r are

≠tC � DC 2 PC exp�2b�F 2 Fel�� , (1)

≠tr � aPC exp�2b�F 2 Fel�� . (2)

Here, P � rg 1 e2Dr is a function that, roughly speak-
ing, is concentrated around the growing zone a, b and
g are parameters of the model, and fel is defined be-
low [Eq. (4)]. This form of P is directly inspired from
Ref. [17] (g models a growth cutoff at low density of walk-
ers). There are at least two ways to (intuitively) justify
Eqs. (1) and (2). First, if one replaces P by a d function
located at a sharp interface, the simplest electrodeposition
model is recovered, namely, ≠tC � DC in the bulk, and
�n ? �=C � C exp�2b�F 2 Fel�� at the interface, moving
with a normal velocity given by yn � aC exp�2b�F 2

Fel��. Second, one could consider Eqs. (1) and (2) as aris-
ing from some coarse-graining procedure applied to a dis-
crete stochastic model of electrodeposition, similar to that
developed in Ref. [17]. This second point of view gives
some justification to the form of P. We stress the fact that
the value of C at the interface is not known a priori, only
the value ≠nC is imposed when replacing P by a delta
function.

The distinctive feature of the present model is the pres-
ence of the potential field in the growth term. The equation
satisfied by F can be straightforwardly derived from the
local electroneutrality condition [23] (we assume that
the diffusion coefficient of the cations and the anions is
the same): �= ? �C �=F� � PC exp�2b�F 2 Fel��.
Again, replacing P by a d function gives the boundary
condition C �n ? �=F � C exp�2b�F 2 Fel�� of the
model with a sharp interface. We have actually modified
the equation for F by imposing that the electric field is
small as soon as r fi 0:

�= ? ��C 1 r�h� �=F� � PC exp�2b�F2Fel�� ,

h ø 1 , (3)

which amounts to say that the branches have a nonzero (but
small) resistivity. Equation (2) implies that the velocity of
the growth front depends on two fields that are nonlinearly
coupled through Eq. (3). Notice however that, if P ! d,
the usual relation yn � �n ? �=C still holds. The parameter
Fel is chosen, at each time t, such that the total current

Z
cell

PC exp�2b�F 2 Fel�� � I (4)

is constant in time. This corresponds to the galvanostatic
conditions used in the experiments described above.

Figure 3(b) displays the typical behavior of the 1D
solution of Eqs. (1)–(3) with boundary conditions:
C` � 1, ≠xC�x�0� � ≠xr�x�0� � ≠xr` � 0, F�x�0� � 0,
and ≠xF` � I . Initially, the electrolyte species diffuse
into the electrode (this could be prevented by making the
diffusion coefficient r dependent) while afterwards it is
progressively consumed at the “interface” (the narrow
region where r and C coexist). Then, the system goes to
a traveling wave solution, with the velocity being deter-
mined by the galvanostatic condition (4). This solution
satisfies y≠xr � aCP exp�2b�F 2 Fel��. Integrating
this relation throughout the cell leads to yr2` � aI .
The same reasoning applied to Eq. (1) leads to yC` �
y � I , thus r2` � a and y � I . The concentration
profile C�j, t� � 1 2 exp�2j�lD�, with j � x 2 yt
and lD � I21 fits that experimentally measured in
Ref. [2]. We have performed a linear stability analysis
of this steady solution by numerical means and found
that the most unstable wavelength is of the order of
magnitude of the diffusion length I21. In order to pursue
the comparison with the experiments, we present here

FIG. 3. Representation of a typical solution of the mean-field
equations (1)–(4), with parameters g � 2, I � 10, e2 � h2

(h � mesh size), and a � 2. (a) 2D contour map of the concen-
tration profile (concentration difference between contour lines is
0.1) and the deposit r field coded in a grey scale ranging from 0
(white) to 2 (black). (b) Average (in the y direction) concentra-
tion of the deposit and the concentration fields. The dashed lines
represent the solution of the 1D version of the same equations
with initial conditions given (approximately) by the average ini-
tial condition of (a).
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FIG. 4. Representation of a typical solution of the mean-field
equations (1)–(4), with parameters g � 2, I � 10, and a � 2;
surface tension parameter (a) e2 � 0.2h2; (b) e2 � 5h2, where
h is the mesh discretization. Same coding as in Fig. 3.

numerical simulations of the full 2D equations (cf. Figs. 3
and 4). They show that initial perturbations of the 1D
solution develop into well-defined “fingers,” through a
complex process of screening, within a global envelope
that remains flat. Notice however that, contrary to what
is suggested by Fig. 3(a), the branches cannot merge in a
single advancing front, as the latter can be shown to be
unstable. The width of these fingers is independent of
the initial condition and is of the order of magnitude of
the diffusion length, as in the experiments. The average
concentration r1D of the deposited zone is a [Fig. 3(b)],
as expected. The parameter g does not seem to influence
much the width or the distance between branches, but
rather the width of the interface. On the other hand, the
width of the fingers depends critically on the value of e,
as shown in Fig. 4. In fact, it can be shown that the role
of this parameter is analogous to a surface tension in the
sense that, the bigger e is, the thicker the fingers become.
The experimental results mentioned above stress the fact
that two control parameters are of importance, namely,
the bulk concentration and the current. Correspondingly,
in the rescaled quantities we are working with, two length
scales appear clearly: one set by the current (the diffusion
length I21), the other by e. This amounts to say that
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the effective surface tension decreases with the bulk
concentration of metal cations.

To summarize, we have reported here for the first time
a 2D realistic mean-field model which reproduces fairly
well the structural characteristics of DBM patterns in thin
cell ECD. This approach is supported by experimental
observations and also reproduces the strong porosity of
the deposit obtained in diffusion-limited growth regimes.
Despite such, the mean-field model does not capture the
microscopic texture of the deposits. It predicts the order
of magnitude of the porosity, the average distance between
branches, and their high sensitivity to fluctuations.
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