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High-Pressure Elasticity of a-Quartz: Instability and Ferroelastic Transition
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The single-crystal elastic moduli of a-quartz were measured to above 20 GPa in a diamond-anvil cell
by Brillouin spectroscopy. The behavior of the elastic moduli indicates that the high-pressure phase
transition in quartz is ferroelastic in nature and is driven by softening of C44 through one of the Born
stability criteria. The trends in elastic moduli confirm theoretical predictions, but there are important
differences, particularly with respect to the magnitudes of the Bi . The quartz I-II transition occurs prior
to complete softening of the mode and amorphization.

PACS numbers: 62.50.+p, 61.50.Ks, 62.20.Dc, 78.35.+c
The discovery of pressure-induced amorphization of ice
[1] and the subsequent observation of related transitions
in other materials have provided numerous insights into
the metastable behavior of materials under pressure. Like
ice, SiO2 forms tetrahedral framework structures at low
pressures [2], which also serve as a model system for the
studies of phase transitions, vibrational dynamics, and
chemical bonding in general. a-quartz, the most common
and extensively studied phase of silica, was found to
undergo pressure-induced amorphization [3,4] shortly
after the discovery in ice. Since then, the transition in
a-quartz has been extensively investigated experimentally
(e.g., Refs. [5–7]). The notion that pressure-induced
amorphization in a-quartz (and materials in general [8])
is driven by an intrinsic instability in the structure was
suggested by the negative pressure derivatives of one of
the elastic moduli [3,4]. Subsequent work has revealed
additional complexity that is not fully understood. This in-
cludes the appearance of abrupt changes in microstructure
(macroscopic and microscopic planar features) beginning
at 18 GPa [6] and a crystalline-crystalline transformation
(quartz I-II) that precedes complete amorphization [7].
The relationship between a possible instability in the
structure leading to amorphization and both the onset of
the microstructural changes and the I-II transition has not
been established.

The problem has been examined theoretically (e.g.,
Refs. [9–16]). One of the first theoretical studies of
quartz amorphization identified an instability that was
attributed to the shortening of the nearest O-O distances
[12]. Molecular dynamics simulations of Tse et al. [11]
predicted an instability at 22.3 GPa, indicating that one
of the Born stability criteria (B2) [17] is violated at that
pressure, which corresponded to the point where the
elastic modulus C33 suddenly decreases. Subsequent
classical interatomic and first-principles calculations by
Binggeli et al. [10] suggested that the elastic instability
is associated with Born criteria B3 which decreases with
pressure and becomes negative at about 30 GPa. They
concluded that the reported B2 instability [11] is not
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the cause but rather the result of the transition. They
also predicted that none of the individual elastic moduli
vanish in the pressure region of quartz amorphization and
concluded that vanishing of C66 or C44 is not the cause
of the instability. A dynamical (zone edge) instability
is predicted to be close in pressure to the elastic (zone
center) instability along the same acoustic branch [18,19].
The I-II transition has also been the subject of numerous
theoretical studies (e.g., [16]). The transformation exhibits
order-disorder character with some parallels to the a-b
transition but is still not fully understood.

Measurements of the elasticity of quartz at high pres-
sure are required to address these questions. Ultrasonic
techniques have been used to determine the single-crystal
elasticity tensor of a-quartz at and near ambient pressure
[20,21], but they have not been developed and applied at
the pressures required for examining these phenomena in
quartz. Brillouin spectroscopy probes elastic waves propa-
gating in a crystal and can be used to determine the indi-
vidual elastic moduli. The technique is readily adapted to
diamond-anvil cells (e.g., Refs. [22,23]) for studies of ma-
terials in the pressure range of quartz amorphization. No-
tably, the determination of the pressure dependence of the
elastic tensor requires the use of single-crystal techniques
[23]. A Brillouin scattering study of SiO2 was carried out
above the quartz transformation pressure [5] and revealed
information on the character of the pressure-amorphized
sample. But because of the 180± geometry used in the ex-
periment, the transverse modes were not observable, pre-
cluding determination of the individual Cij . Here we report
the first single-crystal Brillouin measurements of a-quartz
to above 20 GPa at 300 K which yielded the values of the
individual elastic constants as a function of pressure. The
behavior of the Cij with pressure shows that amorphization
in a-quartz is driven by an elastic instability. We further
show that the transition to the amorphous state is ferro-
elastic in nature.

We used a six-pass Brillouin spectrometer described
elsewhere [23]. The l0 � 514.5 nm Ar1-laser line was
used as the excitation source. A polished �30 mm thick,
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�100 mm diameter sample of a-quartz and a ruby chip
were loaded into a 200 mm stainless steel gasket hole of
a large-aperture symmetric diamond-anvil cell. Neon was
used as the pressure-transmitting medium in the first run
from ambient to 15.5 GPa, and helium in the second run to
22 GPa. No noticeable difference between two runs was
observed. The diamond cell was mounted on a stage which
allowed rotation of the cell around x angle (axis perpen-
dicular to the plane of diamond culets). The large-aperture
opening allowed Brillouin shift measurements over a large
range of reciprocal space by rotation of the cell around
x . The data were collected in the forward 60± scatter-
ing geometry where incident and scattered angles are equal
[22]. The symmetry of this geometry simplifies the Bril-
louin equation and allows calculation of the elastic con-
stants without knowledge of refractive index [22]. At each
pressure up to 18 spectra were collected in 10± intervals
as a function of x . At every angle, the longitudinal and
one transverse mode were observable and at 4–5 angles
both transverse modes were seen. The crystallographic
orientation of the sample was determined in situ by x-ray
diffraction.

The longitudinal and transverse shifts as a function of
x angle are shown in Fig. 1. With increasing pressure
the frequency shift of the longitudinal and fast transverse
mode increases. In contrast, the frequency of the slow
transverse mode decreases with pressure. The measured
frequencies of the Brillouin shifts obtained on decompres-
sion from 15 GPa are largely indistinguishable from those
obtained on compression (see also Ref. [5]). The intensi-
ties of transverse modes varied with crystallographic di-
rection and at some angles were comparable with those of
the longitudinal modes at every pressure up to �17 GPa.
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FIG. 1. Longitudinal and transverse frequency shifts as a func-
tion of x (about an arbitrary reference) at 5.0 (open) and 20.2
(filled) GPa. The errors in frequency measurements are compa-
rable with the symbol size. The curves are calculated from the
best fit elastic moduli.
3118
With further increase in pressure, the intensities of trans-
verse modes decreased slowly while the background rose.
In this range of pressure, the previously noted planar fea-
tures were observed [6,7]. When the pressure was raised to
�20.8 GPa, lamellae [6] developed in the sample. At this
pressure, some parts of the sample were still crystalline
and it was possible to collect spectra. When the pressure
was increased to 21.5 GPa, the spectra deteriorated, pre-
cluding the accurate measurement of Brillouin shifts.

The single-crystal elastic moduli (Cij) were determined
using a least-squares fitting routine which minimizes the
difference between measured and calculated frequency
shifts by parameter searches through the elastic moduli
space [24]. The density of quartz needed for the elastic
moduli calculations was obtained from x-ray measure-
ments of the equation of state over this pressure range
[25]. The initial guess for the elastic constants at each
pressure was the set of Cij values at lower pressure.
In general, the calculation of the effective elastic con-
stants in piezoelectric media requires consideration of
the electrical conditions because of the electric field
associated with the sound wave. However, the effect of
piezoelectricity in quartz can be neglected because of its
small coupling (k � 0.01 or less) with sound waves [26].
The stress-strain relation modified by piezoelectricity is
written as

Tij � CijklSkl 2 enijEn . (1)

Here Tij is the stress tensor, Skl the strain tensor, En elec-
tric field, Cijkl the elastic constants tensor, and enij the
piezoelectric tensor. The analysis of Eq. (1) shows (see
Ref. [27]) that the effect of piezoelectricity in a-quartz
leads to overestimation by �0.6% in C11 and underes-
timation by �5% in C12 � C11 2 2C66. These are the
constants expected to be affected the most by the effect
of piezoelectricity due to the relatively large value of e11
[27]. C44 is weakly coupled through e14 because e14 is
much smaller than e11. On the other hand, C33 is free from
piezoelectric coupling since e3j � 0.

The single-crystal elastic moduli of a-quartz as a func-
tion of pressure are shown in Fig. 2. The Cij at zero pres-
sure are in a good agreement with the values obtained from
ultrasonic measurements [20]. All moduli increase with
pressure except C44, which steadily decreases but remains
positive over the investigated pressure range. McSkimin
et al. [20] found that C66 decreased with pressure up to
0.2 GPa; a linear extrapolation of the Cij to zero gives
an instability at 15 GPa (see Ref. [4]). In contrast, we
find a positive pressure shift for the C66 at all of our mea-
sured pressures. Extrapolating the data to higher pressure
(beyond the I-II transition) indicates that C44 would van-
ish at 39 GPa. Interestingly, C14 changes sign near 12 GPa
and pressure dependence of C33 appears to become non-
linear at higher pressures [28].

The mechanical stability of a crystal requires exami-
nation of the Born stability criteria [17] which provide
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FIG. 2. Individual Cij of a-quartz as a function of pressure.
The solid circles represent increasing pressure and open circles
decreasing pressure. The solid curves show fits to the data.
The errors in elastic moduli without error bars are comparable
to (or less than) the symbol size. The error bars represent the
standard deviation in the best fit parameters and uncertainties in
the frequency shifts and crystal orientation.

the necessary conditions for a crystal to be mechanically
stable. These criteria translate into the condition that the
elastic constant matrix is positive, which for a trigonal
crystal is

B1 � C11 2 jC12j . 0 ,

B2 � �C11 1 C12�C33 2 2C2
13 . 0 , (2)

B3 � �C11 2 C12�C44 2 2C2
14 . 0 .

Figure 3 shows the experimental pressure dependence
of the Born criteria for a-quartz. B1 and B2 both in-
crease within the investigated pressure range while B3
goes through a maximum around 17 GPa and then de-
creases. However, the elastic constants and Born stability
remain finite at pressures corresponding to the appear-
ance of planar features (18 GPa) and the I-II transition
(22 GPa) which prevented higher pressure single-crystal
measurements. Extrapolation in pressure indicates that B3
becomes negative at about 39 GPa. Qualitatively, the ex-
perimentally determined pressure dependences of the three
Born stability criteria show similar behavior to those calcu-
lated theoretically [10], but there are important quantitative
differences. In particular, the calculations with pseudo-
potentials give B3 � 0 at 35 GPa and with interatomic pair
potentials at 22 GPa. Notably, the instability at 22 GPa
calculated with interatomic potentials and the observation
of the I-II transition at that pressure is coincidental because
the experimental B3 is finite at that pressure.
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FIG. 3. Born criteria (a)– (c) and soft acoustic mode (d) of
a-quartz as a function of pressure. The solid circles were cal-
culated from the measured elastic moduli. The solid lines were
calculated from individual fits to the Cij . The dot-dashed and
dashed lines show the result of pseudopotentials and interatomic
potentials calculations, respectively, from Ref. [10]. The dashed
lines are extrapolations of the present data using linear pressure
fits to the Cij . The dotted lines are quadratic fits to the Bi .
Nearly identical behavior is found for the calculated instability
when using quadratic fits to the Cij (B3 � 0 at �45 GPa). The
vertical dotted line shows the position of the quartz I-II transi-
tion at 20.8 GPa.

It is possible to identify the type of the phase transition
by investigating the combination of the elastic constants
corresponding to the soft mode frequency which vanishes
at the transition. If we examine the behavior of the soft
acoustic mode shown in Fig. 3 which for trigonal classes
32, 3m, and 3m is (see Ref. [29])

rV 2 �
1
4 ��C11 2 C12 1 2C44�

2 ��C11 2 C12 2 2C44�2 1 16C2
14�1�2� . (3)

We see that rV 2 goes through a maximum near 6.5 GPa
and then decreases nearly linearly, vanishing at �39 GPa.
The linear behavior and negative slope of the mode in the
higher pressure regime is indicative of proper ferroelastic
behavior.

In conclusion, measurement of the single-crystal elastic
moduli of a-quartz has provided the first complete in situ
high-pressure study of Cij and Born stability criteria of a
material undergoing pressure-induced amorphization. It
has revealed an elastic instability in a-quartz associated
with the softening of C44 with pressure. The soft mode
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analyses indicates an underlying ferroelastic transition.
The I-II transition, which intercedes prior to complete
softening of the mode, may be triggered by an associated
dynamical instability (e.g., Refs. [18,19]). The role of
other factors such as thermal activation, preexisting planar
defects, and the precise crystal structure of phase II also
needs to be clarified. To this end, our measurements pro-
vide stringent tests of first-principles theoretical models
of the high-pressure behavior of this material.
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