
VOLUME 84, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 3 APRIL 2000
Boundary Effects in Chiral Polymer Hexatics
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Boundary effects in liquid-crystalline phases can be large due to long-ranged orientational correlations.
We show that the chiral-hexatic phase can be locked into an apparent three-dimensional N 1 6 phase
via such effects. Simple numerical estimates suggest that the recently discovered “polymer hexatic” may
actually be this locked phase.

PACS numbers: 64.70.Rh, 61.25.Hq, 87.16.Ka
Liquid crystals provide a tabletop laboratory to
study broken symmetries and the resulting low-energy
Nambu-Goldstone modes [1]. Viewing two-dimensional
crystallization in this way led to the proposal of an inter-
vening phase between the liquid and the solid: the hexatic
[2], a two-dimensional phase with long-range orientational
order but short-range positional order. In three dimensions,
arguments based on Landau theory suggest that there is no
similar orientationally ordered phase between the three-
dimensional liquid and solid [3]. However, between a
nematic phase and a crystal phase, the mesogens can
have hexatic order in the plane perpendicular to the
nematic director [4]. While this “N 1 6” phase could, in
principle, exist (it is not terribly different from a biaxial-
nematic phase) it was not immediately discovered.
Recently, however, Strey et al. [5] have examined a phase
of DNA, having a structure consistent with N 1 6 order,
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which they call the polymer hexatic. In this Letter, we
will consider the effects of boundaries on an N 1 6
phase consisting of chiral molecules, such as DNA. We
will argue that while symmetry predicts that the hexatic
bond order should twist [6] surface effects can “lock in”
a preferred set of directions which can effectively unwind
the twisting hexatic.

The phase sequence of a chiral mesogen usually starts
with the cholesteric at the highest temperatures or low-
est concentrations. As the temperature is lowered or the
density increased, the mesogens can form any number of
phases, including the (achiral) smectic-A phase, the smec-
tic twist-grain-boundary phase [7], or the chiral hexatic [6].
In the last case, the free energy which governs the transi-
tion from cholesteric to chiral hexatic depends on both the
nematic director n and the complex hexatic order parame-
ter c6:
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where r and u are Landau parameters and Ki are the Frank
elastic constants. In the cholesteric phase, �c6� � 0 and
(1) reduces to the free energy of a cholesteric with equi-
librium pitch P � 2p�q0. When hexatic order persists
c6 � jc6jei6u6 and, as in the Meissner phase of super-
conductors [7], the nematic director satisfies === 3 n � 0.
However, in this phase, it is straightforward to see that the
hexatic bond order rotates about the average nematic direc-
tion: ===u6 � q̃0n0. Recalling the phenomenology of the
superconductor or smectic-A liquid crystal [8] we empha-
size that if the director unwinds then the hexatic bond order
must twist. Further, we expect the cholesteric pitch to un-
wind continuously to infinity at the cholesteric-to-chiral-
hexatic phase transition, as has, in fact, been observed [5].
Possible phase diagrams are shown in Fig. 1.

Deep in the chiral-hexatic phase the nematic order
freezes [6] and we can rewrite (1) in the “London
limit”:
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where KA � 72jc6j
2. In the following we take the aver-

age nematic axis to be n0 � z. This free energy, however,
applies only deep inside the sample. In general there will
be surface terms which can bias the hexatic bond-order di-
rection. For instance, if the boundary is a flat surface, then
the mesogens will be either “surface loving” or “surface
hating” and will try to maximize or minimize their con-
tact with the surface, respectively. If the surface tension
is large, the first few layers of molecules will be locked
and then simple geometric arguments, akin to the classic
Onsager treatment of nematics [9], show that there is an
entropic penalty for the hexatic order to rotate away from
the preferred direction, as shown in Fig. 2.

To model the effect of this surface interaction, we add
to (2) the surface term
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FIG. 1. Phase diagram of a chiral mesogen that can form an
N 1 6 phase. In the cholesteric phase there is no hexatic order
(c6 � 0) and === 3 n fi 0. In the chiral-hexatic phase === 3
n � 0 but c6 fi 0 and ===u6 � q̃0n. (a) Type-I behavior with
no intervening defect phase. (b) Type-II behavior in which a
twist-grain-boundary phase (akin to the Abrikosov flux phase in
a superconductor) intervenes between the cholesteric and chiral-
hexatic phase.

Fsurface �
Z

≠V
dsdz h cos�6u6� , (3)

where V is the volume of the sample and ≠V is the bound-
ary in the xy plane. The sign of h is determined by the
surface affinity of the mesogens, while the magnitude of
h can be estimated through an excluded-volume, entropic
analysis. Taking the mesogens to be polymers (so that
in Fig. 2, the disks are the polymer cross sections in the
xy plane), we consider a hexagonal crystallite of extent j

(the translational correlation length) in the xy plane and
length LP along ẑ, rotating away from its preferred direc-
tion. Presumably LP is precisely the polymer persistence
length, which is the typical correlation of the polymer po-
sitions along the nematic axis. In this case, the number of
allowed states for a small rotation u away from the pre-
ferred angle can be expanded in powers of cos�6u�. The
entropic contribution to the free energy is then

FIG. 2. Hexagonally close-packed disks near a wall with sur-
face normal N. Each hexagonal crystallite defines a set of
hexatic axes shown as six-pointed arrows. In (a) we show a
favorable packing for surface loving disks, while in (b) we show
a packing of surface hating disks. For either case, deviations
away from this packing are disfavored entropically.
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where g is a geometric factor of order unity, N �
V��LPj2� is the number of polymer crystallites, and V
is the volume of the system. Note that g , 1 to ensure
that the entropy is well defined. Converting (4) into an
integral over the surface gives jhj � kBT��LPj�. For the
polymer hexatic phase studied in [5], LP � 500 Å and
j � 400 Å.

We propose that this surface anchoring can prevent the
equilibrium twisting that a chiral-hexatic phase must ex-
hibit whenever the nematic director is aligned. To pursue
this, we consider configurations in which the hexatic bond
order is uniform at any constant height z. This should be
reasonable deep inside the hexatic phase where there is
true long-range bond order. The free energy is
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where K 	 KAA, H 	 hL, A is the cross-sectional area
of the sample, and L is the length of the sample along the
wall which provides the anchoring. This effective free en-
ergy has frequently been studied before in the context of
commensurate-incommensurate transitions. For small val-
ues of q̃0 the cos�6u6� term prevents any twisting, while for
larger values the system admits soliton solutions which let
u6 slip by 2p�6. In equilibrium, it is straightforward [10]
to show that a soliton is the lowest energy configuration
when
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In addition to the estimate for h, we can estimate KA via
dimensional analysis: KA 
 kBT�j, where j is the (finite)
translational correlation length in the hexatic phase. How
should we estimate q̃0? In the cholesteric phase of DNA,
the pitch is on the order of 1 mm. We can use this to
estimate the rate at which a polymer bundle twists about
the average nematic axis. To do so we consider a bundle
of N polymers, with separation a. We let them twist about
the center of the bundle so that the polymer that crosses
z � 0 at �r, f� has conformation [11]

R�z; r, f� � �r cos�q̃0z 1 f�, r sin�q̃0z 1 f�, z� .
(7)

We calculate the energy for a twisted bundle of radius r0
and length Lz . There are two contributions to the energy:
the bending energy of the individual polymers and the
Frank free energy of the liquid crystal deformation. The
first energy is proportional to the bending modulus k. If
the polymers sit at radii ri and have an average spacing a,
then, for q̃0r ø 1 we have
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where N is the number of polymers in the bundle. The
liquid crystal deformation has no splay and we have just
accounted for the bend deformations. The remaining en-
ergetic contribution is from the twist:
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Finally, minimizing the total free energy F � Fbend 1
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The bending modulus is k � kBTLP , where LP is the per-
sistence length, while K2 � kBT�d, where d is the Odijk
length, given by d 
 �LPa2�1�3. Thus an estimate of the
coefficient of q̃2

0 is Np2L
4�3
P a2�3�P2, where P is the hex-

atic pitch. The experiment [5] finds a translational corre-
lation length on the order of ten a � 4 nm intermolecular
separations so presumably each twisting bundle is com-
posed of N 
 100 molecules. In this case, Nk�K2 �
1022 mm2. If we take a typical range 1 mm , 2p�q0 ,

10 mm then (10) shows that 2 mm , 2p�q̃0 , 20 mm.
This follows from the fact that though the persistence
length is long for DNA, it is still 2 orders of magnitude
smaller than the cholesteric pitch: twisting on this length
scale is easy for the polymers.

Using (6), we find that twisting (through the introduc-
tion of solitons in the u6 field) becomes unfavorable for
systems of linear dimension smaller than a certain criti-
cal length. For system sizes such that L , 16��LPp2q̃2

0�
the boundary terms dominate the free energy so the bond
order is effectively pinned by these surface effects. From
the above estimates of the equilibrium pitch of the hexatic
bond order we find that the largest system which allows
surface pinning is on the order of 300 mm when the pitch
is 20 mm. The sample was on the order of 1 mm [12]
so the outer boundaries of the sample are possibly too far
away to cause lock-in. However, it is possible that sample
preparation introduced interior walls. A wall spacing on
the order of 
300 mm would imply internal regions of
roughly 107 DNA molecules. If, on the other hand, we
were to take the smallest reasonable pitch of 1 mm, we
would find a wall spacing of 3 mm, which is unreasonable.
Indeed, it is likely that in the hexatic phase, intermolecular
correlations can modify the chiral interaction as argued in
[5] and [13] and lead to a lengthening of the pitch. It is
thus reasonable that in the hexatic phase the chiral strength
can be reduced and we are somewhere between these two
extremes.

The data, if taken to represent only the bulk physics,
show that 2p�q̃0 
 1 mm since the hexatic order does not
twist by 2p�6 inside the illuminated region. However,
with walls 1 mm away, the data are consistent with an
equilibrium pitch of 44 mm, not that far from our naive
estimate of the pitch. Thus, bearing in mind the Landau
free energy of this system, one can conclude only that the
hexatic pitch is longer than 44 mm, but not infinite. The
absence of the observation of a finite hexatic pitch can
be attributed to the surface pinning effects. If we take
our estimate of the hexatic pitch and make the reasonable
assumption of a few internal walls in the sample or if
we imagine the hexatic pitch to be within a factor of 2
of typical pitches, it is clear that such a pinned state is
expected. In either case the effects of surface pinning are
required to interpret the data. As further evidence for our
pinning hypothesis, it is known that the hexatic director
tends to align with the long axis of the sample [12].

Since both sides of (6) are the same order of magnitude
the condition to prevent solitons is, at best, marginally
satisfied. What happens if we have solitons? We shall
see that even close to the transition a state with solitons
will still have an achiral hexatic signature. When (6) is an
equality, it becomes energetically favorable for the system
to introduce one soliton into the bond-order field, u6�z�.
Such a field configuration, in which the hexatic bond order
jumps by 2p�6 near z � 0, is shown by the dotted line in
Fig. 3. At low densities two solitons interact via a weak
exponential repulsion with a range set by the distance over
which u6�z� changes rapidly with z.

This weak interaction of two solitons leads to the rapid
proliferation of such twists in the system upon tuning the
system parameters, L and q̃0. Once these parameters are
tuned so that the chemical potential of a soliton becomes
negative, numerous solitons are spontaneously created un-
til their weak mutual repulsion returns the soliton chemical
potential to zero. In this case the bond-order field takes the
form [14]
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where am�x, m� is the inverse of the incomplete elliptic
integral of the second kind and the parameter k is related to
the energy via E�k2� � kpq̃0

p
LPL�4, where E�x� is the

complete elliptic integral of the second kind. The solution
to (11) describes a regular array of solitons with a density
controlled by the value of the parameter k.

As shown in Fig. 3 the parameter k controls the equi-
librium density of solitons in the system. When k � 1,
there is precisely one soliton in the infinite system and, as
k decreases from unity, the soliton density grows mono-
tonically. When k � 0.95 this soliton density reaches a
point where mutually overlapping solitons join to form an
almost uniform gradient in the bond order. The system
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FIG. 3. Three solutions for the bond-order field as a function
of height. We show the one soliton (k � 1, the dotted line) solu-
tion, as well as multisoliton solutions for k , 1. The parameter
k is determined by the sample dimension L and the equilibrium
pitch q̃0 allowing the construction of the phase diagram shown
in the inset. In the “pinned” phase (P) the bond-order field u6
is prevented from twisting by the surface pinning while in the
“free” (F) phase the bond order can twist. Upon approaching the
phase boundary (solid line) from below, the bond order begins to
twist by the creation of solitons. The actual phase boundary line
is chosen by arbitrarily assigning a maximum (nonzero) soliton
density as described in the text.

returns to its “free” behavior with u6�z� ~ z. On the other
hand, if k is larger than unity, there are no solitons in the
system in equilibrium. The bond-order field is completely
pinned by the edges of the sample so that u6�z� is constant.

The experimental signature of the pinned phase is a six-
fold modulation of the in-plane scattering intensity. It can,
in fact, persist into regions of the phase diagram which
allow modest densities of solitons. The sixfold modula-
tion of the scattering intensity should remain evident as
long as the density of solitons is small enough so that
distinguishable plateaus in the u6 shown in Fig. 3 exist.
We take a somewhat arbitrary but nevertheless conserva-
tive estimate of the transition to be the point at which the
plateaus are twice as long as the intervening regions where
the u6 field changes rapidly [15]. By this criterion the solid
curve in Fig. 3 represents a free phase configuration of u6.
The division of the parameter space between the pinned
and freely twisting bond order selects a critical value of
k � k�. Solving for k� leads to a phase boundary be-
tween pinned and free states of the form q̃0L1�2 � const.
This curve (with the constant set by k�) is shown in the
inset in Fig. 3. Additionally, the soliton lattice could, in
principle, be observed via scattering due to its periodic
structure along ẑ.

Finally, we comment on the role of the thermal effects.
Fluctuation effects become important near the boundary of
the pinned and free phases since there the system exhibits
3112
a delicate balance of the bulk elastic and surface energies.
The qualitative effect of thermally produced solitons is to
move the phase boundary down and to the left in the inset
in Fig. 3. To assess the magnitude of this shift, we compare
the surface free energy cost to kBT . In a system with a size
as small as L 
 10 mm the surface energy is on the order
of 103kBT . The transition is controlled then by the balance
of energies 3 orders of magnitude greater than the thermal
energy, so we conclude that thermal effects are negligible
except in the narrow region along the phase boundary
where the surface and bulk energies are balanced to within
0.1%. Additionally, at higher temperatures the long-range
hexatic order will melt, leaving a surface hexatic along
with a bulk cholesteric. The details of this transition could
be confirmed through experiments along the lines of [5].
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