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Equilibrium Distribution of Heavy Quarks in Fokker-Planck Dynamics

D. Brian Walton1,* and Johann Rafelski2,†

1Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721
2Physics Department, University of Arizona, Tucson, Arizona 85721

(Received 8 July 1999)

We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein’s relation between
drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the
transverse and longitudinal diffusion for dimension n . 1. We provide a complete characterization of the
equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis
to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration.

PACS numbers: 12.38.Mh, 05.10.Gg, 25.75.–q
The velocity distribution of objects subject to a (ther-
mal) background plays an important role in a number of
scientific fields, including plasma physics and astrophysics
[1], nuclear physics [2,3], and, more generally, in kinetic
theory [4–6]. The Fokker-Planck equation is a popular
tool to study this distribution. It can be motivated in a
number of ways. One method is to create a Langevin
equation [4,7], which describes the stochastic behavior of
a single object propagating with random noise. Another
method comes by taking a master equation, such as the
linearized Boltzmann-Vlasov equation [6], and perform-
ing a Landau soft-scattering approximation. Finding re-
cent theoretical calculations for the transport coefficients of
the Fokker-Planck equation based on a microscopic theory
[2,3], we recognized the need to establish a simple proce-
dure for understanding the relation between the transport
coefficients of the Fokker-Planck equations as determined
in such microscopic calculations, and the resulting proper-
ties of the equilibrium distribution.

After a brief summary of the recent developments in
the Fokker-Planck studies of equilibrating heavy quarks
in a quark-gluon plasma, we generalize and apply a well-
known relation between kinetic coefficients and the equi-
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librium distribution of the Fokker-Planck equation in a spa-
tially homogeneous environment [8]. In that way we are
able to relate the drag and diffusion coefficients to the
shape of the equilibrium distribution. We stress the im-
portance of including both transverse and longitudinal dif-
fusion to maintain a consistent equation. A simple test
follows which exactly determines when the equilibrium
distribution obeys Boltzmann-Jüttner statistics or the more
general Tsallis statistics [9]. We also discuss how to
choose the transport coefficients in order to attain the
Boltzmann-Jüttner distribution, and address some issues
related to the difference between the stopping power and
the drag and diffusion coefficients.

The statistical properties of an ensemble of objects
(particles) can be expressed in terms of the one-particle
distribution function, f� �x, �p, t�. This density, when multi-
plied by the 2n-dimensional phase-space volume element
dnxdnp, gives the probability of finding the object in this
infinitesimal region of phase space. We have introduced
the dimensionality n explicitly, and we will primarily
pursue the physical case n � 3, with the case n � 1 also
of interest due to its exceptional character. We assume
that f� �x, �p, t� obeys a Boltzmann-Vlasov master equation
of the form [6,8]
≠
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f 1 ��x ? =xf 1 ��p ? =pf �
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In the nonrelativistic limit, E ! m, but otherwise our no-
tation is applicable to both classical and relativistic me-
chanics. The collision term has two parts: in the first gain
term the transition rate W� �p1, �k� represents the rate that
a particle with momentum �p1 � �p 1 �k loses momentum
�k due to reactions with the background. The second term
represents loss due to scattering out. The collision term is
strictly local, depending only on momenta of particles, but
it depends on position �x indirectly, because W incorporates
any background inhomogeneity.
Expanding the gain term about �p to second order in �k
leads to the Fokker-Planck equation:
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(3)

where we are using the Einstein summation convention for
repeated indices i and j. We have introduced the transport
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coefficients of drag and diffusion, respectively:

Ai � Ai� �p� �
Z

dnkkiW� �p, �k� ,

Bij � Bij� �p� �
1
2

Z
dnkkikjW� �p, �k� .

(4)

It is generally believed that the Fokker-Planck equa-
tion describes well the approach to (thermal) equilibrium.
However, since we shall find that this is not guaranteed, we
record yet another independent way to motivate the form of
the Fokker-Planck equation (3), the Ito-Langevin method.
Consider the Langevin system of equations:

d �x
dt

�
�p
E

,

dpi

dt
� Fi� �x� 1 Gi� �x, �p� 1 Dij� �x, �p �hj�t� ,

(5)

where the noise term �h is Gaussian white noise with
�hi�t�� � 0, and �hi�t�hj�t0�� � dij d�t 2 t0�. Using
Ito’s formula one shows that this Langevin system corre-
sponds to the Fokker-Planck equation [7]:
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(6)

Thus, we see that we can identify Ai $ 2Gi and Bij $

� 1
2DDT �ij .

While the computation of Dij is not obvious in the
Langevin formulation, the master equation approach gives
precise formulas. Written in terms of the two body colli-
sion reaction matrix elements M , the drag and diffusion,
according to Eq. (4), are [2,3]:
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� ����pi 2 p0
i���� ; (8)

Bij� �p� �
1
2

�����pi 2 p0
i� �pj 2 p0

j����� . (9)

In our case, the incoming particle is different from the
background. For each background species, there is a simi-
lar additive contribution to the collision integral in Eq. (7).
Moreover, as long as the background does not distinguish
discrete quantum numbers of incoming particles (such as
spin), we can combine these properties in one distribution
f. In such a case, we need to average over the initial reac-
tion channels and sum over the open final channels, akin to
the evaluation of the cross section, hence the degeneracy
factor g21 of the foreground particle. In Eq. (7) g� �k� is the
particle density of the background, assuming that there is a
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single type of particle, and g̃� �k� � �1 6 g� �k�� represents
a Bose enhancement�Pauli suppression factor for scattered
background particles, as appropriate. We assume that the
background has equilibrated at the temperature Tb .

We are now prepared to study the equilibrium distri-
bution and its relation with the drag and diffusion coeffi-
cients. We study the simplest possible case of a spatially
homogeneous distribution. In the absence of vectors other
than �p the values of Ai and Bij , which depend function-
ally on �p and the background temperature T , must be of
the form, where p2 � p2

i (summation convention is al-
ways implied):

Ai� �p, T � � piA�p, T � , (10)
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(11)

Bk is the longitudinal and B� the transverse diffusion co-
efficient. In terms of microscopic reaction amplitudes,
these three functions are defined by the following expres-
sions [2]:
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With no external forces and a homogeneous background,
Eq. (3) reads

≠f
≠t

�
≠

≠pi

µ
Aif 1

≠

≠pj
Bijf

∂
� 2 �=p ? �P . (15)

A natural requirement for feq, detailed balance, is for the
probability current �P to vanish [8]:

Ai� �p, T � � Bij� �p, T �
≠F� �p�

≠pj
2

≠Bij� �p, T �
≠pj

, (16)

where we wrote the equilibrium distribution as

feq�p; T , q� � N exp�2F�p; T , q�� . (17)

Here T , q are parameters that may be needed to charac-
terize the shape of the distribution. Graham and Haken
[10,11] provide a more general approach which classifies
when such a simplification is valid, and how to extend the
condition Eq. (16) when it is not valid. For our case, we
have verified that Eq. (16) is valid.

Using Eqs. (10) and (11), as well as the fact that in the
spatially homogeneous case the equilibrium distribution
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depends only on p � j �p j, Eq. (16) becomes

A�p, T � �
1
p

dF

dp
Bk�p, T � 2

1
p

dBk

dp

2
n 2 1

p2 �Bk�p, T � 2 B��p, T �� , (18)

which is the desired relation between the shape of equilib-
rium distribution and the three drag/diffusion coefficients.
The special case considered by Einstein arises in the clas-
sical problem of a particle that travels through an ideal heat
bath and undergoes linear damping (Rayleigh’s particle).
Substituting the coefficients A � g and B� � Bk � D
into the relation (18), we obtain the Boltzmann equilib-
rium distribution Eq. (17) with F � p2�2mkT only if
Einstein’s well-known drag-diffusion relation for Brown-
ian motion g � D�mkT is satisfied.

When the equilibrium distribution is known a priori and
if the diffusion coefficients are also known, then it is an
easy matter to use Eq. (18) to find the unique, consis-
tent drag coefficient. However, the reverse is not true for
n . 1: given the equilibrium distribution and the drag co-
efficient, there are two diffusion coefficients which must
be simultaneously determined, which is in general not pos-
sible without a further assumption. One “popular” method
to do this is to assume that the tensor Bij is diagonal, that
is B� � Bk and then to solve the linear first order differ-
ential equation to obtain Bk:

d
dp

�e2F�p�Bk�p�� 1 pA�p�e2F�p� � 0 . (19)

While discussing the relationships between the drag and
diffusion coefficients of the Fokker-Planck equation, we
note another interesting relation between these coefficients
and the frequently discussed stopping power. The stopping
power measures the energy loss per unit distance traveled,
and is equal to the energy loss per unit time divided by
the particle speed. Thus, in terms of the elementary matrix
elements [12]:
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. (20)

When combined appropriately with Ai , a relativistically
invariant (scalar) quantity is found:

piAi 1 p
dE
dx

� 2
1
2

�����pm 2 p0
m�2���� , (21)

where we use four-vector notation. Equation (21) shows
that the stopping power and the drag coefficient are, in
general, two independent quantities. To connect them we
need to evaluate also

B00 � �����E 2 E0�2����, A0 � ����E 2 E0���� . (22)

In the nonrelativistic limit these two new quantities are
relatively small. The energy loss can be expressed as
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For the Rayleigh particle considered earlier, noting B00 !
0, this corresponds to an energy loss:
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which vanishes precisely for a thermal velocity.
The problem that we are facing even in the simple

spatially homogeneous case is that the Fokker-Planck
coefficients cannot simply be chosen to ensure that the
“correct” equilibrium distribution results but have already
been obtained in terms of elementary collision reaction
amplitudes, see Eqs. (12)–(14), and thus the resulting
equilibrium distribution is fixed, as can be seen solving
and integrating Eq. (18) to obtain F. Since the drag and
diffusion coefficients are not evaluated exactly but in
some valid approximation, typically applying a pertur-
bative expansion, it is more appropriate to analyze the
resulting distribution in terms of some useful class. We
consider the class of Tsallis statistics [9], which depends
on a temperaturelike quantity T and on a parameter q:

FTs �
1

12q ln�1 2 �1 2 q�E�p��T � . The Boltzmann
distribution arises when q ! 1. Substituting FTs into
Eq. (18), we obtain

T 1 �q 2 1�E �
dE
dp

Bk

pA 1
dBk

dp 1
n21

p �Bk 2 B��
.

(25)

Whenever the ratio given by the right-hand side of Eq. (25)
becomes linear in E, then Tsallis statistics describe the
stationary distribution. When the ratio is constant, then
a Boltzmann-Jüttner distribution suffices. We note that
for the special case n � 1 and nonrelativistic dynamics
dE�dp � y, Eq. (25) was obtained recently within the
Langevin formulation of the Fokker-Planck dynamics [13].

We consider now the drag and diffusion coefficients for
a charm quark with mass mc � 1.5 GeV interacting with
thermal gluons at Tb � 500 MeV calculated using per-
turbative QCD techniques [2,3]. We have gone to con-
siderable length to ensure that these results apply [14].
Diamonds in Fig. 1 show the ratio Eq. (25). The lin-
ear regression fit (straight line) shows that the parameters
best describing the distribution as a Tsallis distribution are
q � 1.114 and TT � 135.2 MeV. The dashed horizontal
line in Fig. 1 corresponds to the Boltzmann-Jüttner distri-
bution (q � 1 and TT � Tb), which we were expecting to
find. The difference to the actual distribution appears to
be significant in the wide domain of charmed quark en-
ergies studied. Our parametrization of the spectral shape
is empirical, yet remarkably accurate, with little statistical
improvement arising from further parametrization of the
remaining deviation seen in Fig. 1.

The more practical question is what the charmed quark
spectrum would actually look like. This is shown in Fig. 2
where a solid line shows the Tsallis distribution as ob-
tained above, compared to Boltzmann-Jüttner shape for
33
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FIG. 1. Calculated data (diamonds) and linear fit for the ratio
in Eq. (25) for a charmed quark mc � 1.5 GeV thermalizing
in gluon background at Tb � 500 MeV. Dashed line: result
expected for a Boltzmann-Jüttner distribution, T � Tb .

Tb � 500 MeV and mc � 1.5 GeV. Assuming that the
Tsallis shape would be measured, the spectrum would re-
veal two components: at low E a “cold” Boltzmann distri-
bution, and for high E a power law with feq ~ En, where
in our case n �

1
12q � 28.8.

Our study of the equilibrium distribution is systematic,
but the results are not definitive, since the properties of
transport coefficients are under study. Recent estimates
of the stopping power in QGP [15,16], Eq. (23), suggest
that glue radiative processes are the dominant contribution
to transport coefficients. However, it is not the magni-
tude of the drag and diffusion transport coefficients (which
determine the magnitude of relaxation time towards equi-
librium), but the ratio of the transport coefficients which
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FIG. 2. Normalized equilibrium spectra: Tsallis distribution
(solid line) and Boltzmann-Jüttner distribution (dashed line) at
Tb � 500 MeV, with mc � 1.5 GeV.
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determines the shape of the equilibrium distribution as seen
in Eq. (18). Since neither of the three required coefficients
has been computed for other than collisional processes, it
is not possible to infer the impact of radiative effects on the
shape of the equilibrium distribution. However, our meth-
ods presented here are easily applied, once these transport
coefficients are known.

In summary, we developed tools which allow us to
identify within Fokker-Planck dynamics the equilibrium
distribution for given (calculated) drag and diffusion co-
efficients, or when the stationary distribution is known,
to determine the drag or, as a recipe for n . 1 dimen-
sions, both longitudinal and transverse diffusion coeffi-
cients. We have shown that thermalization of charmed
quarks in a quark-gluon plasma by collisional processes
on light quarks and gluons leads to a spectral shape well
parameterized by the two parameter Tsallis distribution,
and we have determined the pertinent spectral parameters
for the published microscopic drag/diffusion coefficients.
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