
VOLUME 84, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 3 APRIL 2000
Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels
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Nonparaxial propagation of ultrashort, high-power laser pulses in plasma channels is examined. In
the adiabatic limit, pulse energy conservation, nonlinear group velocity, damped betatron oscillations,
self-steepening, self-phase modulation, and shock formation are analyzed. In the nonadiabatic limit, the
coupling of forward Raman scattering (FRS) and the self-modulation instability (SMI) is analyzed and
growth rates are derived, including regimes of reduced growth. The SMI is found to dominate FRS in
most regimes of interest.
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Guiding of intense laser pulses in plasma channels [1] is
beneficial to various applications, including harmonic gen-
eration [2], x-ray lasers [3], advanced laser-fusion schemes
[4], and plasma-based accelerators [5]. A laser pulse in
vacuum diffracts after a distance on the order of a Rayleigh
length ZR � pr2

0 �l, where r0 is the spot size at focus,
l � 2pc�v, and v is the frequency. A preformed plasma
density channel can prevent diffraction, e.g., a channel with
a radially parabolic density profile n�r� � n0 1 Dnr2�r2

0
can guide a laser pulse of spot size r0 provided Dn � Dnc,
where Dnc � 1�prer

2
0 is the critical channel depth and

re � e2�mec2 [6]. Plasma channels have been created ex-
perimentally by various methods and have been used to
guide laser pulses over distances &100ZR [1,7,8].

Conventional theories of intense, finite-radius pulse
propagation in plasmas have assumed the paraxial approxi-
mation (PA) [1], which assumes a fixed group velocity
and neglects many important finite pulse length effects.
In the PA, axial transport of energy within the pulse is not
permitted. Hence the PA is incapable of describing many
phenomena, e.g., forward Raman scattering (FRS) [9,10],
in which intensity modulations arise from an axial trans-
port of energy. The PA does describe the self-modulation
instability (SMI) [5,11,12], i.e., intensity modulations
from a radial transport of energy. There has been debate
within the community [5,9–13] as to which of these
instabilities is responsible for intense pulse modulation
observed in experiments [13]. A comprehensive theory of
FRS and SMI is currently lacking.

In this Letter, a nonlinear theory of nonparaxial
pulse propagation is derived that is valid for ultrashort,
high-power P # Pc pulses in plasmas with or without a
parabolic channel. HerePc�GW� � 17�lp�l�2 is the criti-
cal power for relativistic self-focusing [1], lp � 2pc�vp ,
and vp � ckp � �4pn0e2�me�1�2 is the plasma fre-
quency. This theory is first used to analyze pulse
propagation in the adiabatic limit, e.g., pulse energy
conservation, nonlinear group velocity, damped betatron
oscillations, pulse self-steepening, self-phase modulation,
and shock formation. In the adiabatic limit the plasma
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response reduces to a standard third-order nonlinearity in
the field. Hence, the adiabatic wave equation typifies a
general class of problems in nonlinear media. In the non-
adiabatic limit, which includes time dependent coupling
to plasma waves, instabilities are analyzed. The explicit
coupling and interplay between SMI and FRS are clearly
delineated, and analytic expressions for the growth rates
are derived, including regimes of reduced growth. The
SMI is found to dominate FRS in most regimes of interest.

The wave equation for the transverse component of
the normalized vector potential a� � eA��mec2 of the
laser field, in terms of the independent variables z �
z 2 bg0ct and z, is [1]∑

=2
� 1 2

µ
ik 1

≠

≠z

∂
≠

≠z
1 g22

g0
≠2

≠z 2 1
≠2

≠z2

∏
â � K2â ,

(1)

where a� � �â�2� exp�ikz 2 ivt� 1 c.c. (c.c. denotes
the complex conjugate), v and k are the central frequency
and wave number, yg0 � cbg0 is the linear group velocity
of a matched fundamental Gaussian pulse in a channel
[14], i.e., g

22
g0 � 1 2 b

2
g0 � v2

p�v2 1 4c2�r2
0 v2, and

vbg0�ck � 1. Here K2 � k2
p�r0 1 dr� 2 g

22
g0 v2�c2,

r0 � 1 1 Dnr2�n0r
2
0 , and dr is the nonlinear plasma

response which, in the limits â2 ø 1 and k2
pr

2
0 ¿ 1, is

given by [9–12] �≠2�≠z 2 1 k2
p�dr � 2k2

pâ
2�2, assum-

ing circular polarization such that a2
� � â2.

For a short pulse of length L propagating in a plasma
channel, the operators on the left of Eq. (1) scale as =� �
1�r0, ≠�≠z � 1�L, and ≠�≠z � 1�ZR . In the following
analysis, the last two terms on the left of Eq. (1) are small
in the parameter regime of interest (underdense plasmas
k2
p�k2 ø 1) and will be neglected. This is valid provided
j≠2â�≠z2j ø 2j≠2â�≠z≠zj, which implies L ø 2ZR , and
g

22
g0 j≠

2â�≠z 2j ø 2j≠2â�≠z≠zj, which implies 2L�ZR ¿

�1 1 4�k2
pr

2
0 �k2

p�k2. These two conditions, along with
k2
pr

2
0 ¿ 1, imply k2r2

0 �4 ¿ kL ¿ k2
pr

2
0 �4 . 1. For

an underdense plasma g
22
g0 ø 1, and the ≠2�≠z≠z term
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dominates. At high densities (e.g., kp�k � 1), the ≠2�≠z 2

term dominates, as in conventional nonlinear optics.
In Eq. (1), the term 2≠2�≠z≠z represents the leading-

order correction to the paraxial wave equation. It proves
convenient to further approximate this operator by us-
ing the paraxial expression for the operator ≠�≠z, i.e.,
≠â�≠z � �2i�2k� �K2 2 =

2
��â. Using this approxima-

tion in the term 2≠2�≠z≠z, Eq. (1) becomesµ
=2

� 1 2ik
≠

≠z

∂
â �

∑
K2 1

i
k

≠

≠z
�K2 2 =2

��
∏
â . (2)

The second and third terms on the right represent the lowest
order (first order in 1�kL) contributions of 2≠2â�≠z≠z.

Equation (2) can be solved using the source-dependent
expansion method [1,11], wherein â is expanded in a se-
ries of Laguerre-Gaussian source-dependent modes, â �P
m âmLm�x� exp�2�1 2 ia�x�2�, where m � 0, 1,

2, . . . , âm�z , z� is the complex amplitude, x � 2r2�r2
s ,

rs�z , z� is the spot size, a�z , z� is related to the curvature,
Lm�x� is a Laguerre polynomial of order m, and axisym-
metry has been assumed, i.e., â � â�r , z , z�. Assuming
that â is adequately described by the lowest order mode
�m � 0�, the evolution of the real parameters rs, a, ar ,
and u, where â0 � ar exp�iu�, is given by

�rs�rs � 2a�kr2
s 2 HI , (3)

�ar�ar � 22a�kr2
s 1 GI 1 HI , (4)

�a � 2�1 1 a2��kr2
s 1 2HR 2 2aHI , (5)

�u � 22�kr2
s 2 GR 2 HR , (6)

where �Q � ≠Q�≠z (for a function Q), and the subscripts
R and I denote the real and imaginary parts. Also,
�G,H� �

P
�G,H�j with j � a, b, and c,

k2r2
0Ga � �2 2 Dcr

2
s �r2

0 � �TA 2 k�
1 �1 2 Dcr

2
s �r2

0 �TB , (7)

k2r2
0Ha � �Dcr2

s �r2
0 � �TA 2 k� 2 �1 2 2Dcr

2
s �r2

0 �TB ,
(8)

k2r2
0Gb � 2�1 1 a2�TA 1 �i 2 a�aTB , (9)

k2r2
s Hb � 2�1 2 ia�2TA 1 �1 1 2a2 1 ia�TB , (10)

Gc � 2
4kp
k2

Z z

z0

dz1 S�z , z1�

"
TC 1

r2
s1TD

2�r2
s 1 r2

s1�

#
,

(11)

Hc � 2
4kp
k2

Z z

z0

dz1
r2
s S�z , z1�

�r2
s 1 r2

s1�

3

"
TC 1

r2
s1�r2

s 2 r2
s1�TD

2r2
s �r2

s 1 r2
s1�

#
, (12)
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where Dc � Dn�Dnc, P̂ � P�Pc � k2
pa

2
r r

2
s �16, TA �

u0 2 ia0r�ar , TB � a0 2 2�a 1 i�r 0s�rs, TC � k 2

TA 1 2ia0r1�ar1, TD � 2TB 1 4ir2
s r

0
s1�r3

s1, S � �r2
s 1

r2
s1�21P̂1 sinkp�z 2 z1�, Q0 � ≠Q�≠z , Q1 � Q�z1�, and

z0 is chosen before the pulse �z # z0�. Notice that
Eqs. (3) and (4) imply ≠P̂�≠z � 2P̂GI . When Q0 � 0,
Eqs. (3)–(12) reduce to paraxial limit [1] andH � G � 0
describes paraxial vacuum diffraction of a Gaussian beam.

Consider the adiabatic limit in which the pulse length
is long compared to the plasma wavelength �k2

pL
2 ¿ 1�

and coupling to the plasma wave (e.g., FRS) is neglected,
i.e., dr � 2â2�2. The wave equation then contains a
cubic nonlinearity. In this limit, Eqs. (11) and (12) reduce
to k2r2

s Gc � 2k2r2
s Hc 1 P̂�a0�2 2 �a 1 3i�r 0s�rs� and

k2r2
s Hc � P̂�u0 2 k 2 3ia0r�ar�. This implies ≠P̂�≠z 1

≠�dbgP̂��≠z � 0; i.e., the local group velocity is given
by bg � bg0 1 dbg�z , z�, where

k2dbg � 2�r2
0 2 �1 1 a2��r2

s 2 Dcr
2
s �r4

0 1 3P̂�r2
s .

(13)

Furthermore, the total pulse energy W �
R
dz P̂ is con-

served, i.e., ≠W�≠z � 0. This is not true for the general
nonadiabatic case, since pulse energy is lost to the genera-
tion of plasma waves.

In the low power �P̂ ø 1� adiabatic limit with Dc � 1,
rs � r0 1 dr, and a � da (where dQ�Q � P̂), we
obtain dbg � 3P̂�k2r2

0 , and the power evolution is given
by P̂ � f�z 2 6P̂z�k2r2

0 � where f is a function, e.g.,
f�z � � P̂0 exp�22z 2�L2� for a Gaussian with a peak
power P̂0. This describes self-steepening of the pulse
power profile; i.e., the higher the local power, the higher
the local group velocity, dbg, and power is shifted for-
ward within the pulse. The pulse peak moves at a velocity
bpeak � bg0 1 dbpeak with dbpeak � 6P̂0�k2r2

0 . In
the absence of dispersive pulse broadening [from the
term g

22
g0 ≠2�≠z 2 in Eq. (1)], steepening continues until

a shock is formed �≠P̂�≠z ! `�. For a Gaussian f�z �,
shock formation occurs after a distance z � ZS , where
ZS � �e1�2�6�kLZR�P̂0.

Spot size evolution in the low-power adiabatic limit can
be examined by perturbing about the zero-power, matched-
pulse equilibrium with Dc � 1, i.e., rs � r0 1 drs, a �
da, ar � ar0�z � 1 dar , etc. In particular, Eqs. (3) and
(5) imply∑µ

≠

≠z
2

2
kZR

≠

≠z

∂2

1
4

Z2
R

∏
ar0dr
r0

� 2
P̂ar0
Z2
R

. (14)

For the initial conditions drs � dr0, dr0s � 0, and P̂ �
P̂0 exp�22z 2�L2�,

drs�r0 � �Fbdr0�r0 1 F3
bP̂�4� cos�kbz� 2 P̂�4 ,

(15)

where Fb � exp�22zz�ZbL 2 z2�Z2
b�, kb � 2�ZR is

the betatron wave number, and Zb � kLZR�2 is the be-
tatron damping distance. In the linear limit �P̂ � 0�,
Eq. (15) describes damped betatron oscillations of a pulse
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mismatched �dr0 fi 0� in a channel [14]. Asymptotically,
these oscillations damp via drs � exp�2z2�Z2

b� for fixed
z , with a head-tail asymmetry. For finite powers, how-
ever, betatron oscillations arise even when dr0 � 0, only
now with an enhanced damping rate, i.e., exp�23z2�Z2

b�.
This is the case since a pulse with P̂0 . 0 is no longer
matched when rs � r0 in a channel with Dc � 1. Re-
call that paraxial theory [1] gives a matching condition
r4
s �r4

0 � �1 2 P̂��Dc. For Dc � 1 and P̂ ø 1, this gives
rs�r0 � 1 2 P̂�4, precisely the asymptotic �z ¿ Zb� be-
havior given by Eq. (15).

Phase distortions (self-phase modulation) also develop.
In the limit P̂ ø 1 and Dc � 1, Eq. (6) implies d �u �
�4dr�r0 2 3P̂��kr2

0 . This results in local frequency shifts
via dv�v � du0�k. Asymptotically, for z ¿ Zb (ne-
glecting betatron oscillations), the self-phase modulation
due to self-steepening is given by d �u � 24P̂�kr2

0 , which
implies dv�v � �2�3� ln�P�P�z � 0��.

Numerical solutions to Eqs. (3)–(12) in the adiabatic
limit are shown in Figs. 1–3 for the parameters l �
1 mm, r0 � 10 mm �ZR � 310 mm�, lp � 15 mm (Dn�
Dnc � 1.1 3 1018 cm23 and n0 � 4.9 3 1018 cm23),
a0 � 0.4 �P̂0 � 0.18�, and L � 5 mm �FWHM � 20 fs�
with an initially Gaussian profile, P�0� � P0 3

exp�22z 2�L2�. The spot size evolution rs�z� is shown

FIG. 1. Spot size rs�z� at (a) front z � L, (b) center z � 0,
and (c) back z � 2L of pulse, from simulation (solid curve)
and theory (dashed curve), for l � 1 mm, r0 � 10 mm, lp �
15 mm, Dc � 1, P̂0 � 0.18, and L � 5 mm, with an initially
Gaussian profile.
in Fig. 1 near the (a) front z � L, (b) center z � 0,
and (c) back z � 2L of the pulse. The numerical (solid
curve) and analytical (dashed curve), Eq. (15), solutions
show good agreement in Figs. 1(a) and 1(b). At the
back of the pulse, discrepancies arise, e.g., a nonlinear
betatron wave number shift; however, excellent agree-
ment is obtained for smaller P̂0. Self-steepening of the
power profile P̂�z � is shown in Fig. 2 at z � 0 (solid
curve), z � 20ZR (dashed curve), and z � 40ZR (dotted
curve). The velocity of the peak is in good agreement
with theory �dbpeak � 2.7 3 1024�, as is the position
of shock formation Zs � 0.55Zb�P̂ � 48ZR � 1.5 cm.
The evolution of the intensity profile a2

r �z , z� is shown in
Fig. 3 with the effects of the damped betatron oscillations
and self-steepening clearly evident.

A recent paper [15] has proposed using the quasiparax-
ial approximation (QPA) to analyze the adiabatic limit, in
which the ≠�≠z term in Eq. (1) is replaced by a term pro-
portional to z . We note that in the QPA the pulse energy
increases via W � W0 exp�z2�2Z2

b�, hence, to approxi-
mately conserve energy, the QPA is restricted to z ø Zb .
Also, we find no evidence for the “enhanced” self-focusing
discussed in [15].

Laser-plasma instabilities of finite-radius pulses (as
opposed to plane waves) can be examined using the full
equations, Eqs. (3)–(12), including coupling to the plasma
wave, as in FRS and SMI. Analytically, this is done
by expanding Eqs. (3)–(12) about the optically guided,
matched-beam equilibrium given by rs � r0, ar � a0,
a � 0, and u0 � 0, where a0 and r0 are constants
(a flattop axial profile) and Dc 1 P̂ � 1 is assumed.
Letting Q � Q0 1 dQ and dQ � dQ̂ exp�ikpz � with
j≠dQ̂�≠z j ø jkpdQ̂j (modes resonant with the plasma
wave) give

L1L2dr̂ � iCcdr̂ , (16)

where L1 � ≠2�≠ẑ≠ẑ 1 k̂pP̂, L2 � �≠2�≠ẑ2 1 k̂2
b�≠�

≠ẑ 1 iP̂, Cc � k̂pP̂2�2, k̂b � kbZR � �4 2 2P̂�1�2,
k̂p � kp�k, ẑ � kpz , and ẑ � z�ZR . Notice that
L1dr̂ � 0 describes conventional 1D FRS [9,10] and
L2dr̂ � 0 describes conventional 2D SMI [11,12]. In

FIG. 2. Power profile P̂�z � at z � 0 (solid curve), z � 20ZR
(dashed curve), and z � 40ZR (dotted curve) for the parameters
of Fig. 1.
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FIG. 3 (color). Intensity profile a2
r �z , z� for the parameters of

Fig. 1.

general, Eq. (16) describes the nonlinear coupling of these
two instabilities.

Using Eq. (16), asymptotic expressions for the number
of e-folds Ne, dr̂ � exp�Ne�, have been obtained in
the appropriate spatial-temporal regimes. Typically, two
branches to Eq. (16) are identified, associated with SMI
and FRS, with either conventional (C) or reduced (R)
growth rates. For the SMI branch, Ne � �2P̂jẑ jẑ�k̂b�1�2

(C) is found to be valid in the short-pulse regime P̂�2k̂b ø

jẑ j�ẑ ø 2k̂3
b�P̂; Ne � c0�P̂jẑ jẑ2�1�3 (C) is valid in the

intermediate regime k̂3
b�2P̂ ø jẑ j�ẑ ø 1�2P̂k̂3

p , where
c0 � �1 1 i�31�2�33�2�25�2; and Ne � c0�P̂jẑ jẑ2�2�1�3

(R) is valid in the long-pulse regime 1�P̂k̂3
p ø jẑ j�ẑ. For

the FRS branch, Ne � �4k̂pP̂jẑ jẑ�1�2 (C) is found to be
valid in the short-pulse regime k̂pP̂ ø jẑ j�ẑ ø k̂pk̂

4
b�P̂,

Ne � �2k̂pP̂jẑ jẑ�1�2 (R) is valid in the intermediate regime
2k̂pk̂

4
b�P̂ ø jẑ j�ẑ ø 2�P̂k̂3

p , and Ne � �4k̂pP̂jẑ jẑ�1�2

(C) is valid in the long-pulse regime 1�P̂k̂3
p ø jẑ j�ẑ.

Note that SMI dominates FRS in the short-pulse (as-
suming k̂b k̂p , 1�2) and intermediate regimes. FRS
dominates SMI in the long-pulse regime; however, here
growth is significant only in the tail of long pulses, i.e.,
ẑ ¿ 1�2k̂2

pP̂.
As an example, consider parameters relevant to re-

cent experiments on self-modulated laser wakefield
acceleration [13]: l � 1 mm, L � 100 mm (400 fs
FWHM), lp � 10 mm �n0 � 1019 cm23�, Dc � 0,
P � Pc � 2 TW, and a plasma of length 25ZR � 2 mm.
Near the end of the pulse, jz j � L, FRS can occur in the
long-pulse regime if ẑ ø k̂3

pP̂ẑ (before transitioning to
3084
the intermediate regime at larger z). Letting ẑ � e2k̂3
pP̂L̂

(with e , 1) gives Ne � 1.3e, i.e., FRS will not undergo
significant growth. On the other hand, near the front of
the pulse jz j � L�4, SMI will reach saturation in the
intermediate regime, e.g., Ne � 12 after z � 5ZR .

In summary, a nonlinear theory of finite-radius pulse
propagation has been developed that includes finite pulse
length and group velocity effects. In the adiabatic limit,
effects such as the nonlinear group velocity, damped beta-
tron oscillations, and self-steepening were analyzed. In the
nonadiabatic limit, the nonlinear coupling of FRS and SMI
was described and asymptotic growth rates were derived in
various regimes. For sub-ps pulses, SMI dominates in typi-
cal regimes. The validity of this theory has been restricted
to underdense plasmas �kp�k ø 1� with z , ZS , but these
constraints can be relaxed by a straightforward extension
of this theory to include the g

22
g0 ≠2�≠z 2 term in Eq. (1).
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