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Stable Static Localized Structures in One Dimension
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We study the existence, the stability properties, and the bifurcation structure of static localized solu-
tions in one dimension, near the robust existence of stable fronts between homogeneous solutions and
periodic patterns.

PACS numbers: 47.54.+r, 42.65.Pc, 82.40.Ck
The study of static localized structures has attracted a
great deal of attention, at least since the time one expected
to use magnetic bubbles as main storage elements (see,
e.g., [1]). Similar localized structures arise in liquid crys-
tals [2], in gas discharge systems [3,4], and in chemistry
[5–7] so that, all together, one has both variational and
nonvariational examples. More recently, there has been a
new surge of interest in the context of optics, where such
structures have again been envisioned as storage elements
[8]. For quite some time, it has been recognized that the
existence of localized structures does not require bistabil-
ity, by which is usually meant the simultaneous existence
of two stable homogeneous states [6]. Here we will use the
theory of dynamical systems to formulate a unified analy-
sis of a large class of stable localized solutions when the
dimension of the medium is one. Our theory can be tested
as we make predictions on the phenomenology one can ob-
serve in the neighborhood of the parameter region where
some stationary fronts exist. We will build on the fact that,
in the case when a stable homogeneous solution coexists
with a stable periodic pattern, Pomeau has described the
mechanism of robust existence of stable stationary fronts
between the two states [9]: there is a region F in pa-
rameter space whose boundaries correspond to unpinning
transitions, where such fronts exist.

We will report on the fact that the region F is shad-
owed by a region of existence of stable localized struc-
tures when the dimension of the medium is one, as well
as in two dimensions when the periodic pattern has com-
pact elementary cells such as hexagons. We consider sys-
tems described by variational or nonvariational equations
such as

≠tu � 2
≠V
≠u

2 y 1 Du=2u ,

≠ty � 2gy 1 cu 1 Dy=2y ,
(1)

or

≠tu � 2
≠V
≠u

2 n=2u 2 =4u , (2)

where V � 2mu2�2 1 u4�4 2 hu. Equation (1) de-
scribes a chemical reaction [6], while Eq. (2) is a gen-
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eralization of the Swift-Hohenberg model [10], which
appears in a variety of contexts. We numerically observe
localized structures in F both when the dimension of
the medium is one and when it is two (see Figs. 1 and
5). When approaching the unpinning transition, where
the front loses its stationarity by a periodic nucleation
process which destroys elementary cells at the interface
[11,12], the minimal number of cells that one can observe
in a localized structure diverges. When crossing the other
unpinning transition, where the front loses its stationarity
by a periodic nucleation process which creates new
elementary cells at the interface, one continues to observe
localized structures, but now the maximal number of cells
decreases as the parameter departs from the transition. In

FIG. 1. Localized structures obtained in two-dimensional
simulations of Eqs. (1) and (2). In (a), the single cell is stable,
but the larger structure is growing. In (b), one observes two-cell
and three-cell solutions while the one-cell solutions cannot be
stabilized.
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the case where the dimension of the medium is one, we
will offer a description of the underlying mechanism in
terms of the qualitative theory of differential equations.

In the case where the dimension of the medium is one,
the second member of Eqs. (1) or (2), which describes the
stationary solutions, can be rewritten as a four-dimensional
vector field [13] (we assume this dimension to be 2N $ 4
in the rest of the discussion) that inherits from the space
isotropy the reversibility property [14,15] which is the
essential ingredient in the analysis to follow. An orbit
of the vector fields does not need to correspond to a
stable solution of the partial differential equation (PDE).
For reversible critical points (which correspond to parity
invariant homogeneous states) and reversible periodic
solutions (which correspond to parity invariant periodic
patterns), dynamical stability generically implies there
is no purely imaginary eigenvalue or purely imaginary
Floquet exponent ik0, k0 fi 0, because otherwise the cor-
responding zero growth rate at k0 would generically induce
positive and negative growth rates at nearby wavelengths
[dynamically unstable localized solutions of Eq. (2) have
been studied in [16] and references therein]. Natural
coordinates for the phase space are �u, ux , y, yx� for
Eq. (1) and �u, ux , uxx , uxxx� for Eq. (2). By definition
[14], the phase portrait of a reversible system in dimension
2N is invariant under the reflection symmetry R about a
N-dimensional plane P. More precisely, for any point
X, the forward trajectory of X remains the image under
R of the backward trajectory of the point R�X�. Orbits
invariant under R are called reversible. Combining the
previous stability argument with the reversibility property
implies that all stable and unstable manifolds of reversible
critical points and periodic orbits which are dynamically
stable have dimension N . In the above cases where the
fields components are scalars, P corresponds to the odd
derivatives set equal to zero, so that all of the critical
points, which correspond to the stationary homogeneous
solutions of the PDE, are reversible. A (stationary)
localized solution of the PDE corresponds to a homoclinic
curve biasymptotic to a critical point of the vector field: if
the homoclinic curve is reversible, it is robust. Reversible
periodic orbits are characterized by the fact that they
intersect P at exactly two points. A fundamental result
pertaining to these periodic orbits is that they arise in
one-parameter families, with the period of the orbit generi-
cally varying along the family [14]. The heteroclinic
orbit corresponding to a Pomeau front selects one of
these periods when a parameter l varies (for instance,
h in the examples given above). Hence, the existence
of the one-parameter family of reversible periodic orbits
explains the robustness of the stationary front (a similar
argument has been used to establish the boundary-induced
wavelength selection in [13]). This can be captured on a
Poincaré map on a �2N 2 1�-dimensional section to the
family of periodic orbits containing P, as illustrated in
Fig. 2 in the case when N � 2. In this section, the family
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FIG. 2. Phase portrait for a Poincaré section near a family of
reversible fixed points when there exists a Pomeau front.

appears as a line P of fixed points Pl, so that the collection
of the stable and unstable manifolds form n-dimensional
surfaces Ws�P� and Wu�P� symmetrical with respect to
P, the invariant manifolds of the critical point A appear
as �N 2 1�-dimensional surfaces Ws�A� and Wu�A�, so
that Wu�A� intersects Ws�P� transversely. When l varies,
the selected fixed point Pl changes, and the relative
positions of Wu�A� and Ws�P�, and of Wu�A� and P,
change (as illustrated in Fig. 3), where the boundaries of
F correspond to Figs. 3a and 3c. As illustrated in Fig. 3b,
between the boundaries of F , there are transversal inter-
sections of Wu�A� with Ws�P� (for an early relationship

FIG. 3. The evolution of the heteroclinic and homoclinic point
structures as the parameter l is varied. In (a), the stationary front
appears. In (b) the existence of the front induces the existence
of localized structures. In (c), the stationary front disappears.
In (d), localized structure subsists after the stationary front has
disappeared.
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FIG. 4. Correspondence between elementary cells on the struc-
tured side of a front and elementary cells of localized structures
with an even or odd number of elementary cells, corresponding
to the pairing of marked points in Figs. 2 and 3b.

between pinning and transversality, see, e.g., Ref. [17]).
This implies transversal intersections of Wu�A� and P,
which by reversibility are also transversal intersections
of Ws�A� and P, thus correspond to homoclinic orbits
biasymptotic to A and thereby to localized solutions of
the PDE. These solutions arise in pairs, being created
and destroyed by saddle-node bifurcations; using the con-
tinuity of the spectrum and the stability of the structured
solutions, this indicates that the localized solutions of the
PDE arise in stable-unstable pairs. Figure 3d illustrates
the fact that such homoclinic intersections subsist beyond
one boundary of F , until they successively disappear
by saddle-node bifurcations. There is a natural pairing
between heteroclinic and homoclinic points, illustrated
in Figs. 2 and 3c: this corresponds to a pairing between
elementary cells that appears on the structured side of
a front and in localized solutions, as shown in Fig. 4.
The localized solutions appear there in two families,
depending on the parity of the number of elementary cells
they contain: the homoclinic orbits corresponding to the
odd family was recently described in [18] in the case of a
Hamiltonian vector field. These two groups correspond
to the homoclinic intersections appearing, respectively,
in the sections near the two intersection lines Pl and
Ql of P with the families of periodic orbits: the saddle
nodes creating and destroying these pairs accumulate in
intertwined geometric series (one series for even numbers
of elementary cells and one series for odd numbers) which
accumulate on the boundaries of F . The ratio of these
series is the modulus of the Floquet multiplier of the
periodic orbit involved in the front at the boundary of F ,
which is out on the unit disk and closest to the unit circle.
The global bifurcation structure for observable solutions
of the PDE is summarized in Fig. 5, where the �x-t�
diagrams should be self-explanatory. The vertical lines
between the boundaries of F , and to its right, correspond,
FIG. 5. The bifurcation structure near the pinning region. The
horizontal axis is the parameter l. The vertical axis is the mean
velocity of the front. The square root shapes at the onset of
nonzero speeds that bound F are a direct consequence of the
saddle-node bifurcation of heteroclinic orbits in Figs. 3a and 3c.
Vertical bars correspond to saddle nodes of homoclinic orbits.
In the x-t diagrams, the t axis is upward.

respectively, to creation and destruction saddle nodes of
stable-unstable pairs of localized solutions.

The geometrical discussion we have offered elucidates
the existence, the stability properties, and the bifurcation
structure of localized solutions when the dimension of
the medium is one, near the robust existence of stable
fronts between homogeneous solutions and periodic pat-
terns. One outcome is that in the domain that we have
precisely identified, and larger than the Pomeau domain
of existence of stable fronts, the periodic pattern can be
understood as a juxtaposition of elementary units which
are the localized structures. A heuristic analysis a la
Melnikov, near a nonrobust heteroclinic connection be-
tween critical points with purely complex spectra, also
leads to the existence of stationary localized structures,
however, with a much smaller parameter range of stabil-
ity [19]. As mentioned previously, the phenomenology in
and near F is observed to be quite comparable when the
dimension of the medium is two, with more richness asso-
ciated with bigger subgroups of the rotation group, but this
case still eludes our geometrical approach, despite work in
progress. Details of this work are reported in Ref. [20].
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