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Universality in Fragmentation
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Fragmentation of a two-dimensional brittle solid by impact and “explosion,” and a fluid by “explosion”
are all shown to become critical. The critical points appear at a nonzero impact velocity, and at infinite
explosion duration, respectively. Within the critical regimes, the fragment-size distributions satisfy a
scaling form qualitatively similar to that of the cluster-size distribution of percolation, but they belong to
another universality class. Energy balance arguments give a correlation length exponent that is exactly
one-half of its percolation value. A single crack dominates fragmentation in the slow-fracture limit,
as expected.

PACS numbers: 46.50.+a, 62.20.Mk
Mechanical fragmentation of brittle solids is a com-
plicated irreversible and nonlinear problem that has con-
cerned scientists for a long time. Fragmentation can be
divided into two classes: continuous and instantaneous
fragmentation. In this Letter, we are dealing with only
the latter. Instantaneous fragmentation encompasses rapid
events such as explosions and collisions. Physical pro-
cesses in this class of events are abundant in nature. On a
very large scale there are fragmentation processes like the
formation of asteroids. Industrial fragmentation processes
can be found on intermediate scales, and on the micro-
scopic scale one can encounter processes such as fragmen-
tation of atomic nuclei. All these processes have attracted
scientific interest for a considerable time.

Based on statistical arguments, two plausible forms for
the fragment-size distribution in instantaneous fragmen-
tation were initially proposed [1,2]: one assuming frag-
mentation to be a Poissonian process, which results in an
exponential distribution of the fragment diameter (or of the
square root of the mass in 2D) [1–3], and the other arising
from maximization of the number of ways fragmentation
can occur (maximum entropy), which gives an exponential
distribution of the fragment mass [2].

A wide variety of experiments and simulations of instan-
taneous fracture revealed, however, a distribution which is
a power law in the small-size range followed by a large-size
residual, or a crossover to a more or less exponential de-
cay in the large-size limit [1,3–8]. This lead to the sug-
gestion by Oddershede et al. [5] that impact fragmentation
displays self-organized criticality. Since scaling appeared
in their experiments up to a size range close to the size of
the smallest dimension of the objects crushed in the ex-
periments, they suggested that the exponential large-size
decay is a finite-size effect.

In contrast to the latter suggestion, it has recently been
shown [3,6] for numerical models that in impact fragmen-
tation the crossover mass and the large-size residual de-
pend on the impact energy, which indicates they are not
finite-size effects but inherent parts of the size distribu-
tion, as also suggested by the statistical arguments.
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As an alternative resolution to the problem, it has very
recently been suggested that in fragmentation, criticality
appears at a single nonzero value of the impact energy
[6]. This seems to be the case for low-energy collisions of
objects as demonstrated by Kun and Herrmann [6].

To resolve the true nature of the possible criticality of
fragmentation processes and to rule between the compet-
ing pictures, it is therefore important to analyze in detail
instantaneous fragmentation. To this end we consider in
this Letter two completely different physical systems, a
disordered 2D lattice of elastic beams, which can be used
to model granular materials [3], and a 2D Lennard-Jones
(LJ) liquid. The disordered lattice of beams is fragmented
by a rapid impact and by applying an isotropic velocity
gradient that models an explosion. The latter mechanism
is also applied to “fragment” the LJ liquid. We will demon-
strate that the impact fragmentation of the disordered lat-
tice of beams becomes critical at a nonzero impact energy
at which point the fragment-size distribution becomes a
pure power law. Away from this critical energy the size
distribution satisfies a scaling form such that the scaling
function is very similar to that of percolation clusters below
the percolation threshold [9]. The explosive fragmentation
of the disordered lattice of beams and the LJ liquid both
become critical only in the limit of zero expansion velocity.
Also in these cases the fragment-size distributions seem to
satisfy the same scaling form. For the LJ liquid we did
not, however, reach the true equilibrium distribution. De-
spite the similar scaling, in fragmentation the correlation
length exponent and the Fisher exponent are not those of
percolation. Both fragmentation processes seem, however,
to have the same exponents, and the correlation length ex-
ponent can be understood by an energy-balance argument.

As described above, we use in this Letter two numerical
models: (I) a 2D fluid described by molecular-dynamics
simulation of atoms interacting via a LJ pair potential [10,
11], and (II) a randomly distorted square lattice of break-
able elastic beams [3]. In model I, N particles under peri-
odic boundary conditions are equilibrated in the liquid state
(at a supercritical temperature and triple-point density)
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before time t � 0. To model an explosion, at t � 0, a con-
stant, isotropic, expanding velocity gradient is applied to all
particles, with periodic boundaries moving at constant ve-
locity. The simulation stops only well after distinct clusters
of particles (i.e., fragments) have formed and are expand-
ing in a quasisteady (ballistic) manner. In model II, we use
a square lattice whose bonds have the elastic properties of
beams with a square cross section w2, Young’s modulus
E, and length l. Masses m are located on the lattice sites,
and the entire lattice is at static equilibrium at t � 0. Peri-
odic boundary conditions are applied in the vertical direc-
tion, and two alternative boundary conditions are used for
the horizontal direction: (1) To model an explosion a con-
stant, uniaxial, expanding velocity gradient is applied to all
masses at t � 0, and the sites at the left and the right
boundaries are forced to move with a constant velocity.
(2) To model an impact a displacement A sin2vt is ap-
plied to the left-boundary masses, over the time duration of
0 # t # p�v. For numerical reasons we do not take into
account collisions between fragments. This would be quite
a serious omission for example in simulating two colliding
objects. If the experimental setup instead leads to a frag-
mentation pulse propagating in a horizontal thin plate, and
fragments can fall down freely, it would be more realistic.
If the impact appears as an expansion wave instead of com-
pression, this assumption does not pose any problem. In a
qualitative study of universality in fragmentation, we thus
find that neglecting collisions between fragments is a rea-
sonable approximation. Furthermore, in a related recent
study [6] where collisions between fragments were includ-
ed, indication of a critical impact energy was also found.

Before discussing the results of the simulations, we pre-
sent an energy-balance argument [10–12], showing how
the typical fragment mass at the initial moments of fragmen-
tation should change as a function of loading. At t � 0,
a region that will ultimately become a fragment is given
expansion energy, related to the homogeneously applied
(explosion) velocity of strain increase h. As the fragment
and its immediate surroundings expand, the local elastic
energy per unit mass increases with the square of the strain.
At the critical moment of fragmentation, given by the time
of sound traversal across the fragment L�c (with L the di-
ameter of the fragment), free surface opens up around the
fragment. In this process the loading energy is balanced
by the energy required to form the surface [10–12]. The
elastic strain is proportional to Lh. Regardless of dimen-
sionality, the surface energy per unit mass is proportional
to 1�L. Thus, at the moment of fragmentation, when the
elastic loading and surface energies are equal, the fragment
diameter L is proportional to h22�3. The typical fragment
mass M0 is then, in d dimensions, expected to scale as

M0 ~ Ld ~ h22d�3, (1)

at the beginning of fragmentation. Excessive elastic en-
ergy will later in the process break the large fragments
into smaller pieces (with the excessive elastic energy we
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mean the elastic energy stored in the fragments which
is not being dissipated at the formation of the first frag-
ment surfaces). Since fragments can only become smaller,
we expect that Eq. (1) also determines the scaling of the
large-size limit of the final fragment-size distribution.

If fragmentation really becomes critical, then Eq. (1)
determines the only length scale in the system. Since the
fragments are simple two-dimensional objects (Fig. 1) and
not fractals as, e.g., in percolation, the correlation length
should scale in two dimensions as

p
M0 ~ h22�3. The ex-

ponent 2�3 is exactly one-half of the correlation length ex-
ponent of percolation. One should also expect that within
the critical regime the fragment-size distribution satisfies
a scaling form. As in percolation we try to express the
fragment-size distribution n�m� as

n�m� ~ m2�a11�f�m�M0� , (2)

where f is a scaling function.
This form for the fragment-size distribution is also sup-

ported by experimental observations. There are two re-
cent investigations of brittle fragmentation [5,8], where
the cumulative fragment-size distributions �N�m� �R`

m n�m0� dm0� were fitted by the empirical form

N�m� ~ m2a exp�2m�M0� , (3)

with a and M0 the fitting parameters. Equations (2) and
(3) are equivalent if f�z� � �a 1 z� exp�2z�. Notice that
this form for f�z� assumes the cumulative distribution
Eq. (3) to be exact. As it turns out below, we can only
deduce that f�z� approaches a constant for z ! 0 and that
it approaches an exponential decay for z ! `. This is [9]
also the behavior of the scaling function of the cluster-size
distribution in percolation.
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F, A=0.20E, A=0.14D, A=0.11

FIG. 1. Fragment patterns for model II: (A–C) uniaxial, homo-
geneous expansion (explosion), and (D–F) high-speed impact.
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A set of simulation results for model II is shown in Fig. 1.
For explosive expansion (Figs. 1A–1C), the fragments are
distributed evenly over the entire system, regardless of h.
The typical size of the fragments increases visibly when
h is decreased, and indeed seems to diverge when h ap-
proaches zero in the way predicted by Eq. (1). In impact
fragmentation, for a sufficiently low impact velocity y �
Av, no fragmentation appears (Fig. 1D), and the compres-
sive impact wave only travels back and forth in the lattice.
When y is increased above a threshold, fragments begin to
appear (Fig. 1E), and eventually begin to localize at the im-
pact boundary (Fig. 1F). This effect is easy to understand.
For y well above the fracture threshold, severe fragmenta-
tion at the impact boundary appears almost instantly, and a
boundary region is separated from the rest of the lattice.
Because of inertial effects very little of the impact energy
will penetrate into the interior of the system, which will
largely remain undamaged. If collisions between frag-
ments were included, we expect fragmentation would ex-
tend farther in the material, but would still be localized
close to the impact boundary for not very high impact en-
ergies. For two colliding objects of fairly similar masses
the situation will be different.

To quantify the phenomena described above, we ana-
lyzed the total mass of the fragmented part of the sample
in the impact fragmentation as a function of the impact
amplitude A (with a constant impact frequency v). We
also analyzed the ratio of the total fragment surface to the
impact energy [i.e., Stot � Nf��LsA2� with Ls the system
size and Nf the total number of broken beams]. In the
case of explosive fragmentation we analyzed the largest
fragment mass as a function of h (for explosions the total
fragment mass cannot be distinguished from the mass of
the system), and the ratio of the total fragment surface to
the induced kinetic energy [i.e., Stot � Nf��L2

sh2�]. The
results are shown in Fig. 2. This figure displays maxima in
both the total fragment mass and the relative fragment sur-
face for the impact fragmentation at A � Ac � 0.14. The
maximum in the total fragment mass gets higher and the
peak becomes narrower for increasing system size, which
is typical of a critical point. It therefore appears that there

FIG. 2. The total fragment mass (A) and the relative fragment
surface (B) as a function of A for two different linear sizes Ls of
the system, and the largest fragment mass (A) and the relative
fragment surface (B) as a function of h. The location of the
critical amplitude Ac is indicated.
is a nonzero impact energy ~ A2
c for which fragmenta-

tion becomes critical. We should then also expect that the
fragment-size distribution becomes a pure power law at
A � Ac. In the case of explosive expansion, the largest
fragment mass and the relative fragment surface continu-
ously increase for decreasing h, which indicates that there
is a critical point close to h � 0 in agreement with Eq. (1).

The value Ac � 0.14 is quite reasonable. A simple elas-
ticity-theory estimation of the maximum local strain gives
A � 0.12 for the amplitude at which the first beams break
(i.e., the ones most liable to fracture due to disorder), and
A � 0.19 for breaking of a typical beam.

The fragment-size distributions are shown in Fig. 3 for
both explosion (Fig. 3A) and impact (Fig. 3B). In the first
case we try “data collapse” suggested by Eqs. (2) and (3),
i.e., we plot N�m�ma as a function of m�M0 using a and
M0 as the fitting parameters such that all points should fall
on a single curve. We find good collapse for a � 0.5. For
impact fragmentation a similar collapse works well for the
same value of a. We show in Fig. 3B that an excellent fit
to the data is also given by the “empirical” form of n�m�
[i.e., f�z� � �a 1 z� exp�2z�] with similar values for a

and M0. The empirical scaling function is also shown in
Fig. 3A for comparison.

The scaling of the correlation length is now determined
by the fitted M0 for the different A 2 Ac and h. Figure 4A
demonstrates that the agreement with the scaling relation
Eq. (1) is excellent for all systems. Notice that a � 0.5
is so small that the average fragment mass is infinite at the
critical point, and that fragmentation is reduced to cleaving
of the sample [13].

As already noticed before [10], fragmentation under ho-
mogeneous expansion of the LJ liquid is a slow process,
and it is difficult to reach thermal equilibrium in molecu-
lar simulations. We would therefore expect that the results
for model I correspond to those at early stages for the dis-
ordered lattice of beams under similar homogeneous ex-
pansion. The results for these two models are compared
in Fig. 4B. This figure shows N�m��m2a as a function
of m�Mo for the expansion fragmentation of both models.

FIG. 3. Fragment-size distributions: (A) N�m�m0.5 versus
m�M0 for explosion fragmentation together with the “empiri-
cal” form f�z� � exp�2z�, and (B) the spectral distributions
n�m� for impact fragmentations fitted with the empirical form
for n�m�.
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FIG. 4. (A) M0 as a function of A 2 Ac and h obtained by
fitting the empirical form to n�m� distributions, and comparison
with Eq. (1). (B) N�m�m0.5 versus m�M0. The fragment-size
distributions for model I and the distributions at an early and
late time for explosive expansion in model II.

According to the scaling form, the results should asymp-
totically approach an exponential function. This is in-
deed the case for the late-stage distributions for model II.
Model I has a fragment-size distribution that is similar to
the early-stage distribution for model II. In fact the cumu-
lative fragment-size distribution for model I can well be
described by

N�m, h, A, t� � �a1m2a 1 a2�h, A, t�� exp

µ
2

m
M0

∂
,

(4)

where the time-dependent coefficients a1 and a2 behave
such that a1 ! const and a2�a1 ! 0 for increasing simu-
lation time t. It appears that the crossover parameter M0 as
determined by this functional form is quite insensitive to
the simulation time, and thus provides a reliable estimate
for the correlation length.

Notice also that large fragments are relatively more
abundant at the early stages of fragmentation, and that most
of the small fragments in the power-law regime are formed
as a result of the breakup (or evaporation for the LJ liquid)
of large initial fragments. This also is in agreement with
the energy-balance principle leading to Eq. (1). The cor-
relation length is set by the impact or explosion energy
which determines the typical size of the fragments in the
first breakup stage. Thereafter fragmentation continues by
breaking the large fragments in a “critical” way, i.e., the
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resulting fragments form a scale invariant small-size range
of the fragment-size distribution.

In conclusion, impact fragmentation becomes critical at
a nonzero impact energy. For expansion fragmentation the
critical point is at zero strain-increase velocity, in which
case a single dominating crack cleaves the sample. In the
impact fragmentation only small damage appears below
the critical point, cleaving of the sample at the critical
point, and fragmentation localized near the point of contact
well above the critical point. Fragment-size distributions
satisfy in all cases analyzed, i.e., for the two physical sys-
tems and for both modes of fragmentation, a scaling form
similar to that of the cluster-size distribution in percola-
tion below criticality. Energy-balance arguments explain
the observed correlation length divergence at the critical
point, j ~ x22�3, where x � A 2 Ac or x � h is the dis-
tance to the critical point.
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