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Thermodynamical Liquid-Glass Transition in a Lennard-Jones Binary Mixture
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We use results derived in the framework of the replica approach to study the liquid-glass thermody-
namic transition. The main results are derived without using replicas and applied to the study of the
Lennard-Jones binary mixture introduced by Kob and Andersen. We find that there is a phase transition
due to the entropy crisis. We compute both analytically and numerically the value of the phase transition
point TK and the specific heat in the low temperature phase.
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In recent times there has been much progress in the
analytic understanding of the thermodynamic transition of
glasses [1–4]. Beyond technicalities the basic assumption
is that a glass is very near to a frozen liquid. This quite
old statement can be rephrased as a liquid is very near to
a heated glass. In other words, the configurations of a
glass at low temperature are not far from those of a liquid.
Therefore, if we use some smart method to explore the
phase space in the liquid phase, we can find the properties
of the low temperature glassy phase.

This strategy has been put into action using the replica
theory. One finds, as output of an explicit computation,
that the glass transition is characterized by the vanishing of
the configurational entropy (the so-called complexity) and
the low temperature phase is described by one step replica
symmetry breaking [5] with a nonvanishing nonergodic
parameter at the phase transition point.

Replica theory is a very powerful tool, but it has the dis-
advantage that many of the underlying physical hypotheses
cannot be seen in a clear way. We will rederive some of
the main result of [1] without using the replica formal-
ism [6]. We suppose that below some temperature (to
be identified with the mode coupling transition [7]), the
phase space of the system can be approximately divided
into regions (which we will call valleys) which are sepa-
rated by high barriers [8,9]. This approximation becomes
better and better when we decrease the temperature and
it becomes exact below the thermodynamics phase transi-
tion temperature TK of the glass [10], where the viscosity
should diverge [11] (unfortunately no quantitative predic-
tions have been obtained microscopically on the behavior
of the viscosity beyond the Adams-Gibbs argument). In
a first approximation each valley can be associated to one
inherent structure, i.e., one minimum of the potential en-
ergy [8,12,13].

Let us consider a generic system with N particles with
Hamiltonian H�C�, C denoting the generic configuration
of the system. The partition function both in the liquid
phase at low temperature and in the glass phase can be
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written as

Z�b� �
X
a

exp�2bNfa�b��

�
Z

dN � f, b� exp�2bNf� , (1)

where fa�b� is the free energy density of the valley labeled
by a at the temperature b21 and N � f, b� is the number
of valleys with free energy density (per particle) less than
f. In the glassy phase this sum is dominated by the valleys
with minimal free energy, while in the liquid phase an
exponentially large number of valleys contributes to the
partition function. It is normally assumed that in glass
forming systems, for large N and f . f0�b�, we have that

N � f, b� � exp�NS� f, b�� , (2)

where the configurational entropy, or complexity, S� f, b�
is positive in this region and vanishes at f � f0�b�. The
quantity f0�b� is the minimum value of the free energy:
N � f, b� is zero for f , f0�b�.

The key point is the computation of the function S� f, b�
for f . f0�b�. It can be done using liquid theory because
in this region we are still in the liquid phase. The location
of the zero of S� f, b� will tell us the value of the free
energy in the glassy phase.

At this end it is convenient to consider the generalized
partition function

Z�g; b� � exp�2NgF�g; b�� �
X
a

exp�2gNfa�b�� .

(3)

The physical meaning of g will be clearer later.
It is evident that

gF�g; b� � gf 2 S�b, f�, f �
≠�g���F�g; b�����

≠g
.

(4)

The complexity can be simply obtained from F�g; b� in
the same way that the entropy can be obtained from the
usual free energy.
© 2000 The American Physical Society
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The crucial step consists in writing

Z�g; b� � dC exp�2gH�C� 2 Ngf�b, C� 1 Ngf�g, C�� �
Z

dC exp�2gH�C� 2 Ngf̂�b, C� 1 Ngf̂�g, C�� ,

(5)
where f̂�b, C� � f�b, C� 2 f�`, C� and f�b, C� is a
function that is constant in each valley and is equal to the
free energy density of the valley to which the configura-
tion C belongs. In deriving Eq. (5) we have assumed that
the value of g is high enough that all the configurations
C, which contribute to the integral for large N , belong
to some valley: We have also assumed that there is a
one to one correspondence among the valley at inverse
temperatures b and at g.

Before entering into the computation of f̂�b, C� it is
useful to make the so-called quenched approximation, i.e.,
to make the following approximation inside the previous
integral:

exp�2Af̂�b, C�� � exp�2Af̂g�b�� , (6)

where f̂g�b� is the expectation value of f̂�b, C� taken with
the probability distribution proportional to exp�2gH�C��.
The quenched approximation would be exact if the tem-
perature dependence of the energy of all the valleys would
be the same, apart from an overall shift at zero tempera-
ture. In other words, we assume that the minima of the
free energy have different values of the free energy but
similar shapes. More refined computations can be done to
compute systematically the corrections to the quenched ap-
proximation. This approximation would be certainly bad
if we were using the free energy f̂�b, C� in the place
of f�b, C� because the zero temperature energy strongly
varies when we change the minimum.

We finally find

F�g; b� � FL�g� 1 f̂g�b� 2 f̂g�g� , (7)

FL�g� being the free energy of the liquid [SL�g� will be
the entropy of the liquid]. A simple algebra shows that

S�g; b� � SL�g� 2 Sg�g� 1 f̂ 0
g�g� 2 f̂ 0

g�b� , (8)

where f̂ 0
g�b� � ≠f̂g�b��≠g.

In the liquid phase, we find out that the configurational
entropy is given by

S�b� � S�b; b� � SL�b� 2 Sb�b� , (9)

as expected: the entropy of the liquid is the entropy of the
typical valley plus the configurational entropy.

The thermodynamic transition is characterized by the
condition

S�bK � � 0 . (10)

In the glassy phase the free energy can be found by first
computing the value of g�b� such that

S�g�b�; b� � 0 (11)

and evaluating the corresponding free energy.
The quantity g�b� is the inverse of the effective tem-
perature of the valley. It is easy to show (following [6])
that the previous formulas are completely equivalent to the
replica approach.

A strong simplification happens if we assume that the
entropy of the valley can be evaluated in the harmonic ap-
proximation where we keep only the vibrational contribu-
tions. In this case we obtain for a system with M degrees
of freedom that the harmonic entropy of the valley near to
a configuration C is given by

S���b�C���� �
M
2

ln

µ
2pe
b

∂
2

1
2

Tr�ln�H �C��� , (12)

where H �C� is an M 3 M Hessian matrix (e.g.,
if H depends on the coordinates xi we have that
Hi,k � ≠2H�≠xi≠xk).

If our approximation were fully consistent, we should
find that all the eigenvalues of H (the so-called INN,
instantaneous normal modes [14]) are positive. This is
not the case, however the number of negative eigenvalues
becomes very small at low temperature, still in the liquid
phase, signaling that valleys can be approximately defined
in this region.

How can we evaluate the harmonic entropy in this case?
Two rather similar possibilities are the following: (a) We
compute Tr�jln�H �C��j� instead of Tr�ln�H �C���. (b) We
find the minimum of the Hamiltonian which is the nearest
to C (i.e., the corresponding inherent structure) and we use
the spectrum of the Hessian at this point. We have checked
numerically that the two methods give rather similar results
[4] and we will follow the second one in the numerical
simulations presented in the paper.

The framework has been set. We now segue into an ex-
plicit computation. Two possibilities are open: (a) We do
an analytic computation of all the quantities which appear
in the previous equations; (b) We extract them from nu-
merical simulations. The first possibility is open only in
relatively simple systems and further approximations are
needed, the second one is viable for all systems.

In this Letter, we shall explore both possibilities in the
case of a realistic model for glasses, the binary mixture
of particles (80% large particles, 20% smaller particles)
interacting via a Lennard-Jones potential, introduced by
Kob and Andersen [15]. This Hamiltonian should mimic
the behavior of some metallic glasses and it is one of the
best studied and simplest Hamiltonians which donot lead
to crystallization at low temperature.

The numerical procedure does not present any serious
difficulty. We have studied via Monte Carlo simulations
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a system of N � 260 particles, in a cubic box with peri-
odic boundary conditions at density r � 1.2, starting from
b1�4 � 0.02 and increasing b by steps of Db1�4 � 0.02;
we performed up to 4 3 106 Monte Carlo steps at each
b. We need to simulate the system at high tempera-
tures in order to compute the entropy of the liquid (we
use as reference entropy that of a perfect gas at b � 0).
The entropy is obtained using the formula S�b� � S�0� 1R

b
0 db0�E�b� 2 E�b0��. Given an equilibrium configura-

tion the near minimum of the potential is found by steepest
descendent and the computation of the 780 eigenvalues of
H �C� does not present any particular difficulty.

The results for the total entropy of the liquid and for the
harmonic part are shown in Fig. 1 as a function of T20.4

(a more detailed description of the simulations can be
found in Ref. [4]). The entropy of the liquid is remarkable
linear when plotted versus T20.4, as it happens in many
cases [16].

In Fig . 2 we show the configurational entropy as a func-
tion of T20.4. We fit it with a polynomial of the second
degree in T20.4. The extrapolated configurational entropy
becomes zero at a temperature TK � 0.31 6 0.04, where
the error contains systematic effects due to the extrapola-
tion (similar conclusions have been reached in Ref. [17]).

There are many methods to compute analytically the free
energy in the liquid phase which lead to integral equations
for the correlation functions. Here we follow a simple pro-
cedure proposed in Ref. [18]. It mixes the HNC (hyper-
netted chain) and MSA (mean spherical approximation)
closures by means of a single parameter a�T � that is
chosen in order to reduce thermodynamic inconsistencies,
minimizing the difference between two different ways of
computing the compressibility. This technique allow us to
compute the internal energy in the liquid with a reason-
able approximation. The resulting integral equations for
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FIG. 1. Analytical entropy of the liquid (upper line) compared
with the numerical one, and analytical harmonic entropy (lower
line) compared with the numerical results. The horizontal axis
is T20.4.
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the correlation function of the two kinds of particles are
transformed into a set of nonlinear differential equations
by discretizing them with a space resolution of 225 and a
large distance cutoff of 24 (we have varied these parameters
and checked that this choice gives a reasonable accuracy).
The resulting equations in 3 ? 512 unknown variables have
been solved using a package from the IMSL library.

The computation of the spectrum is much more in-
volved. We follow a simple approach which becomes exact
if we assume that the range of the Hessian is much larger
than the typical interatomic distance, and we use the su-
perposition approximation

g�x1x2x3� � g�x1 2 x2�g�x2 2 x3�g�x3 2 x1� (13)

in the cases where it is needed [1,3,4]. In order to compute
the eigenvalues of the Hessian we compute analytically the
moments of the eigenvalue distribution

Mk � Tr�H k� . (14)

Each moment can be written as the appropriate integral
over the correlations functions. In this long range approxi-
mation some terms are dominant over the others. We keep
only those terms and we introduce the superposition ap-
proximation into the appropriate places. We use the large
range expansion to select the diagrams [19].

After some computations (which we do not report here
[1,3,4]) we find a spectral density r�e� that has support
only in the region of positive eigenvalues e (real frequen-
cies v �

p
e) and goes to zero as v as expected.

We can now put everything together: the final analytic
predictions for the liquid and harmonic entropy are shown
in Fig. 1. The liquid entropy turns out to be very good,
while there is a minor discrepancy for the harmonic en-
tropy, likely due to the rather strong approximations we
have done in the analytic computation. The analytic con-
figurational entropy is shown in Fig. 2. It becomes zero at
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FIG. 2. Analytical value of the complexity (upper line) com-
pared with the numerical one (1 points), as functions of b0.4.
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FIG. 3. The specific heat coming from the x dependent part of
the Hamiltonian as a function of the temperature.

TK � 0.32, which is our analytic prediction for the ther-
modynamic transition (as a check we have fitted the ana-
lytic configurational entropy using the same procedure as
for the numerical one and we have found TK � 0.34).

We have in our hands all the tools to compute analyti-
cally the free energy in the low temperature case. In Fig. 3
we show the specific heat coming from the x dependent
part of the Hamiltonian as a function of the temperature
(we must add the momentum contribution 3�2 in order to
get the total specific heat). Very similar results are ob-
tained by using the extrapolated numerical entropies at the
place of the analytic ones. We notice that the Dulong-
Petit law is extremely well satisfied in the low temperature
region. Indeed in the harmonic approximation the Dulong
Petit law would be exact if we neglect the g dependence
of Sg�b�. The value of g�b� weakly depends on b: its
value in the limit b ! ` is only about 10% higher that its
value (i.e., bK ) at the transition temperature.

The results presented here are an explicit realization of
a transition driven by an entropy crisis, which has been
first implemented microscopically in the random energy
model [20]. The specific heat has a jump downward, when
we decrease the temperature, which is the opposite of the
typical behavior in transitions characterized by the onset
of a conventional order parameter (in mean field theory
ferromagnets, superconductors, have a jump upward when
we decrease the temperature).

We stress that it is possible to remove the approxima-
tion of using the harmonic entropy. There are no serious
difficulties in computing numerically the true entropy of
the valleys; this has been done for a binary mixture of soft
sphere and the results are very near to the harmonic ones
[3]. Analytically we can also expand in the anharmonicity
parameters. It is also possible to take care of the fluctua-
tions of the entropy from valley to valley and go beyond the
quenched approximation. It is quite likely that these effects
will not strongly change the results. The most important
step would be to reach a better theoretical control on the
spectrum of the INN in the liquid phase, maybe combining
the approximations used here with the low density expan-
sion of [21].

Summarizing, we have found a method which is able to
use the liquid theory method in the glasses phase putting
in practice the old adage a glass is a frozen liquid. We are
able to compute with a reasonable approximation the ther-
modynamics, and with a little more effort we can compute
the static and the dynamic structure functions.
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