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Scaling Behavior of Cyclical Surface Growth
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The scaling behavior of cyclical surface growth (e.g., deposition/desorption), with the number of
cycles, n, is investigated. The roughness of surfaces grown by two linear primary processes follows
a scaling behavior with asymptotic exponents inherited from the dominant process while the effective
amplitudes are determined by both. Relevant nonlinear effects in the primary processes may remain so
or be rendered irrelevant. Numerical simulations for several pairs of generic primary processes confirm
these conclusions. Experimental results for the surface roughness during cyclical electrodeposition/
dissolution of silver show a power-law dependence on n, consistent with the scaling description.

PACS numbers: 05.70.Ln, 64.60.Ht, 68.55.Jk, 81.10.Aj
Much interest has been devoted in recent years to scaling
phenomena in kinetic growth of self-affine surfaces. They
are observed in a variety of phenomena such as crystal
growth, vapor deposition, molecular-beam epitaxy, elec-
trochemical processes, bacterial growth, burning fronts,
etc. [1–4]. Similar rough surfaces may also be gener-
ated by reciprocal processes of surface withdrawal caused
by desorption, corrosion, evaporation, dissolution, and the
like [5]. In many natural and artificial systems of inter-
est, however, surfaces are not formed by a single process
of growth or a sole process of recession. Rather, they are
the product of a combination of both. We investigate here
the fundamental scaling properties of surfaces formed by
cyclical growth processes. We focus on surfaces formed
by two alternating primary processes. Growth/recession
cycles (excluding the trivial cases in which the primary
processes are time-reversed images of each other) are our
main interest but cycles of two different growth (growth/
growth) processes will be addressed as well. Cyclical be-
havior, prevailing in all natural phenomena, may be found
in many of the systems cited above. Typical examples
include weather and light affected processes in organic
(as the expansion/curtailment of a grass lawn or a bacte-
rial colony according to the availability of water or nutri-
ent) or nonorganic (such as alternating underwater erosion/
sedimentation whether or not the water is flowing) sys-
tems. They are also widespread in technological appli-
cations (such as rechargeable batteries for which short
circuit by the metal accumulated on the electrodes is one
of the failure mechanisms). Understanding the cyclical
scaling properties may lead to accelerated testing, and per-
formance improvement, of such systems.

Our main challenge is to generalize the scaling approach
in order to make it applicable to cyclical growth processes.
The analytical, numerical, and experimental investigations,
summarized below, lead us to the conclusion that this is in-
deed possible, provided that the number of cycles n substi-
tutes for the time variable, t, in the scaling relations. We
explore this generalized scaling behavior in several cycli-
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cal processes and reach some general conclusions on their
behavior and their relations to the scaling relations of the
primary processes, of which they are composed.

In the primary processes, the surface width W�L, t�,
where L is the lateral size of the system, is defined as
W�L, t� � ��h��r, t� 2 h�t��2�1�2. In this definition, h�r , t�
is the surface height and h�t� � �h�t�� � yt is the average
height, with y being the average growth velocity. W�L, t�
obeys the following scaling form [1,6]:

W�L, t� � Lag���L�j�t���� , (1)

j�t� � t1�z is the lateral correlation length. For large
time t ¿ Lz : W � La; while for t ø Lz : W � tb ,
where b � a�z is the growth exponent. A related rela-
tion holds for the mean square height difference ��h��r 1
�x, t� 2 h� �x, t��2� � 2�C�0, t� 2 C�r , t��, where C��r , t� is
the (equal-time) height-height correlation function.

The growth processes fall into different universality
classes [2]. All processes within one class share the same
exponents and their asymptotic continuum stochastic
equations differ at most by irrelevant terms [in the renor-
malization group (RG) sense]. Using the symbolic index
i � 1, 2, . . . to denote different processes, the ones we
consider here follow growth equations of the form

≠h��r , t�
≠t

� Ai	h
 1 hi��r , t� 1 yi , (2)

where Ai	h
 is a local functional depending on the spatial
derivatives of h��r , t� and �hi��r , t�hi��r 0, t0�� � 2Did��r 2
�r 0�d�t 2 t0�.

We recall the simplest generic growth processes of this
type: (i) random deposition (RD) for which ARD � 0 and
b � 1�2 (a and z are not defined); (ii) the Edwards-
Wilkinson (EW) model [7] of preferred growth at local
minima has AEW � n=2h and a � 32d

2 , b � 32d
4 , z �

2; (iii) the Kardar-Parisi-Zhang (KPZ) [8] model which
accounts for the growth being locally normal to the sur-
face has AKPZ � n=2h 1

l
2 � �=h�2 and a � 1�2, b �

1�3, and z � 3�2 in 2D, while a � 0.39, b � 0.24, and
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z � 1.61 in 3D; (iv) the Das Sarma–Tamborenea (DT) [9]
(see also [10]) for molecular beam epitaxy deposition or
growth on kink sites has ADT � n4=4h with a � 52d

2 ,
b � 52d

8 , and z � 4.
We investigate theoretically and experimentally the hy-

pothesis that in cyclical processes the scaling law in Eq. (1)
should be replaced with

Wc�L, n� � Lagc���L�jc�n���� , (3)

with jc�n� � n1�z .
We begin with the study of cyclical processes composed

of two primary linear processes, namely, those for which
Ai	h
 � ai� �=�h��r , t�, where ai� �=� is a differential operator
(e.g., the EW and DT models) and for which time-reversal
symmetry holds if the height is defined with respect to the
average height [i.e., for h��r, t� 2 h�t�]. The first process
in the cycle (i � 1) is of duration T1 � pT and second
process (i � 2) lasts T2 � �1 2 p�T . The total duration
of one cycle is T � T1 1 T2.

We also define f�t� as the fractional part of t�T . The
growth equation thus becomes

≠h
≠t

� �a1h 1 h1 1 y1�Q���p 2 f�t����

1 �a2h 1 h2 1 y2�Q���f�t� 2 p��� , (4)

where Q�x� is the unit step function.
For such linear processes, the full scaling behavior may

be retrieved by looking at h� �q, t�, the Fourier transform
(FT) of h��r, t�. The first observation we make is that, in
these time-reversible processes, only the averaged height
h�t� � h� �q � 0, t� is sensitive to the difference between
growth (yi . 0) and recession (yi , 0), and grows as
nTyc, where yc � py1 1 �1 2 p�y2 is the average ve-
locity. The roughness, on the other hand, will not discern
between a growth/growth and a growth/recession cyclical
process (as long as ai and Di are not altered).

In Fourier space, the growth equations for the modes
with �q fi 0 may be integrated. The h� �q, t� after n
[respectively, (n 1 p)] cycles are assigned as the initial
conditions for the �n 1 1�th application of the first (re-
spectively, second) process. The structure factor S�q, t� �
�h�q, t�h�2q, t�� [FT of C�r, t�; for simplicity we assume
spatial isotropy in the basal plane] is then derived by
averaging over the noise. We define āi � ai�q�Ti and
āc � �a1p 1 a2�1 2 p��T , in terms of which we find
Sc�q, n� � S�q, nT � after exactly n cycles to be

Sc�q, n� � exp	22ācn
S�q, 0�

1 	 D1
a1

exp�22ā2� �1 2 exp�22ā1��

1
D2
a2

�1 2 exp�22ā1��
 � 12exp�22ācn�
12exp�22āc� � .

(5)

A similar expression may be obtained for Sc�q, n 1 p� and
straightforwardly extended to any time t � �n 1 f�T .
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For small q, such that āc�q� ø 1, Sc�q, n� takes the
form

Sc�q, n� �
Dc

ac�q�
�1 2 exp	22�ac�q�Tn�
� , (6)

where we introduce the effective parameters of the
cyclical growth process: Dc � pD1 1 �1 2 p�D2, and
ac�q� � pa1�q� 1 �1 2 p�a2�q� � āc�T . The same
conclusion may be reached from coarse graining Eq. (4)
and eliminating all modes with frequencies larger than
2p�T [11] [this also yields the corresponding propa-
gator Gc�q, n� on time scales larger than T ]. In terms
of these effective parameters, Sc�q, n� �Gc�q, n��, with
large n � t�T , of the cyclical process are equivalent to
S�q, t� �G�q, t�� of a primary linear process. Hence, the
scaling behavior, presumed for the former in Eq. (3),
indeed substitutes for that of Eq. (1) which holds for the
latter [2].

In the n ! ` limit, the asymptotic large-scale roughness
is determined by the small q divergence of Sc�q, n�. Since
ai�q� � jqjzi , it is the process with the smaller zi which
dominates the large L cyclical roughness: Wc�L, `� �
ALa , with a � min�a1, a2� � min�z1, z2� 2 �d 2 1�
(the amplitude A is proportional to Dc and is determined
by both primary processes). The larger ai appears as a
correction to scaling exponent.

As for the dynamic exponent z of the cyclical process,
since n appears always multiplied by āc�q�, the slower of
the two primary processes dictates the cyclical dynamics:
z � min�z1, z2�. The correlation length increases with n
as jc � n1�z with an amplitude proportional to �Ti�1�z ,
with Ti of the dominating process. For the initial cycles
�nT ø Lz�, the roughness grows as nb , with b � a�z �
�z 2 �d 2 1���z.

For processes described by stochastic nonlinear equa-
tions, the asymptotic behavior is explored by the RG ap-
proach [2,8]. An approximate RG procedure for cyclical
processes may consist in first coarse graining the free cycli-
cal propagator (obtained from the two primary free propa-
gators as explained above) until it becomes that of an
effective linear, noncyclical process. Using this effective
linear process as the “free” part, all the nonlinear terms of
the primary processes, with bare couplings multiplied by
p or (1 2 p), are added as “interactions.” The RG flows
may then be derived following the usual steps [11]. In this
approximation, the initial flow of the couplings is replaced
by a simplified one. It is implicitly assumed that simplify-
ing the initial flow will not alter the ultimate fixed point for
each of the renormalized couplings. Although this seems
very plausible, it might not always hold.

Assuming it does, some conclusions may be reached.
We begin with only one of the primary processes pos-
sessing a relevant nonlinear term. Its importance for the
cyclical growth will depend on its relevance with respect
to the coarse grained linear approximation of the cyclic
propagator. We may conclude that, if the linear domi-
nant term originates from the same primary process as the
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nonlinearity, the latter will remain relevant. If, however,
the nonlinear process yields the nondominant part of the
free propagator, the nonlinearity may be rendered irrele-
vant, in which case the cyclical behavior will be that of the
other (linear) process.

If both primary processes have a nonlinear term, a
simple behavior is reached if one of them is rendered
irrelevant. Then the other one will bequeath its scaling
exponents to the cyclical descendant. Theoretically, non-
linear contributions from both processes may be relevant
with various potential outcomes [12].

To examine these general conclusions, we performed nu-
merical simulations on specific lattice atomistic models [2]
in 2D (preliminary simulations in 3D show a similar be-
havior). The system size in the simulations was changed
between 128 to 4096 lattice spacings. A typical cycle con-
sisted of a deposition of 5–20 layers (average number of
particle deposited per site) and desorption of between 10%
to 100% of the deposited amount. The maximum number
of cycles, n, varied between 500–10 000, averaged over
50–5000 independent runs, depending on the pairs of pri-
mary processes and the system size. The growth exponent
b was extracted for different system size L. The value
quoted is from the largest L (once b became size indepen-
dent). From W�L, `�, the saturation width dependence on
L, the roughness exponent a was derived. In most cases,
we checked independently the value of a from the scale
dependence of the rms height difference.

For linear primary processes, we looked at the pairwise
combinations of RD/EW, its reverse EW/RD, and DT/EW,
using the standard absorption/desorption algorithms for
EW [13], DT [9,14] (see also [2]), and RD [15]. They all
showed asymptotic cyclical scaling with EW exponents.
This confirms the above conclusions for primary linear
processes, since EW is the dominating one when paired
with RD or DT. We also run the respective adsorption/
adsorption cycles using the same pairs. The roughness
behavior was identical, while their growth velocities were
naturally different.

To simulate nonlinear processes, we included two lat-
tice realizations which belong to the KPZ universality
class: ballistic deposition (BD) [6,15,16] and the restricted
solid-on-solid algorithm of Kim and Kosterlitz (KK) [17].
We have generalized both of these algorithms to desorp-
tion as well [11]. Both realizations yielded equivalent be-
haviors when combined with other processes (as they do
in simple noncyclical adsorption or desorption), and we
quote the ones obtained using the BD (ballistic deposition
or desorption) algorithm. If we combine the nonlinear BD
(or KK) algorithm with the EW (or DT) linear process to
form a cyclical process, the above considerations lead us
to expect KPZ exponents. Indeed, the KPZ free propa-
gator is equivalent to the EW (and dominating over the
DT) one. The exponents obtained are b � 0.311�5�, a �
0.51�1� for EW/BD, and b � 0.322�5�, a � 0.50�1� for
BD/EW. These asymptotic exponents are consistent with
the KPZ b � 1�3 (and, of course, with a � 1�2, which
is the common value of EW and KPZ). However, while
for BD/EW these values were obtained for all sizes, for
EW/BD the exponent b increased slowly with the system
size and the effective b reached its asymptotic value only
for the largest system size (L � 4096). Growth/growth
cycles yielded results very similar to the growth/recession
cycles.

To look at primary processes with different values of
a, a DT �a1 � 1.5� deposition with ballistic desorption
�a2 � 0.5� were performed. In Fig. 1 we show the loga-
rithmic dependence of W (roughness) on ln�n�, for
different system sizes L, for this DT/BD process. The
inset depicts the logarithmic dependence of Wm (the
maximal roughness) vs lnL. From the graphs, we obtain
the asymptotic values of the exponents for DT/KPZ:
b � 0.311�15� and a � 0.48�2�, both consistent with the
KPZ values.

The solid line in Fig. 1 is the full time dependence of
the roughness within the initial cycles. It shows that it
is its average (or its envelope) which scales asymptoti-
cally. Within every cycle, only modulations around this
average are observed. To understand the emergence of
the scaling behavior, the full cycle has to be viewed as
the basic unit of a more complex process, with T as the
unit of time. The scaling behavior unfolds as the cumu-
lative effect of many repetitions of the unit process (with
exponents determined by the relevant among all the fea-
tures it inherited from the primary processes). Finally,
simulations of KK/KK gave surfaces with KPZ scaling
for T1 fi T2. For T1 � T2, however, EW behavior was
found. This follows from the nonlinear KPZ terms in the
primary processes having the same magnitude but opposite
signs.
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FIG. 1. lnW (roughness) of the simulated cyclical DT/BD pro-
cess vs lnn (number of cycles) for different system sizes L. The
solid line is its time dependence during the initial cycles. [inset:
lnWm (maximal roughness) vs lnL].
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FIG. 2. The roughness vs number of cycles n in the electro-
chemical cyclical growth of silver (log-log plot).

Experiments of cyclical growth were performed by
metal electrodeposition/dissolution of silver. Electro-
deposition has been used in recent years to study the
scaling behavior of surface growth (see [18–20] and
references therein). To explore cyclical growth, multiple
electrodeposition/dissolution cycles were carried out on
initially vapor-deposited silver substrates, ranging from 1
to 20 cycles. The plating solution contained 0.092M AgBr
(silver bromide), 0.23M �NH4�2S2O3 (ammonium thiosul-
fate), and 0.17M �NH4�2SO3 (ammonium sulfite). Each
cycle consisted of plating for 5 min followed by 2.5 min of
electrodissolution with a current density of 0.8 mA�cm2.
Up to 20 cycles have been performed and the roughness
was examined by atomic force microscopy after n full
cycles and after the deposition part of the cycles (namely,
after n 1 p cycles with p � 2�3) [21]. Figure 2 shows a
log-log plot of the rms roughness versus the cycle number.
The data are consistent with a power-law scaling and the
fit yields b � 0.48�5�. For comparison, b � 0.71 for
electrodeposition only under the same conditions [21].
Future experimental measurements (on the cyclical as
well as on the primary processes) will allow more detailed
scaling analysis and quantitative comparison of the scaling
relations with theoretical predictions.

In summary, the results of complementary studies of
cyclical growth processes were presented, and show them
to be amenable to scaling analysis. The scaling descrip-
tion holds, provided the time variable is replaced by the
number of cycles. This conclusion is supported by the ini-
tial experimental findings. We have derived the cyclical
behavior of two alternating linear processes and outlined
how the RG approach may be applied in the presence of
nonlinear effects in the primary processes. In all systems
we have studied analytically or numerically, the related ex-
ponents are unaffected by the cycle period T or the rela-
3032
tive durations (p and 1 2 p) of the two processes. One
crucial question is how this behavior might be affected if
the duration of the deposition (and/or desorption) phases
are not uniform. We plan to address irregular intermittent
growth/recession processes in the future [11].
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