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Self-Similar Chain Conformations in Polymer Gels
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We use molecular dynamics simulations to study the swelling of randomly end-cross-linked polymer
networks in good solvent conditions. We find that the equilibrium degree of swelling saturates at Qeq �
N3�5

e for mean strand lengths N̄s exceeding the melt entanglement length Ne. The internal structure
of the network strands in the swollen state is characterized by a new exponent n � 0.72 6 0.02. Our
findings can be rationalized by a Flory argument for a self-similar structure of mutually interpenetrating
network strands, agree partially with the classical Flory-Rehner theory, and are in contradiction to de
Gennes’ c�-theorem.

PACS numbers: 61.41.+e, 64.75.+g, 82.70.Gg
Polymer gels [1–5] are soft solids governed by a com-
plex interplay of the elasticity of the polymer network
and the polymer/solvent interaction. They are sensitive
to the preparation conditions and can undergo large vol-
ume changes in response to small variations of a control
parameter such as temperature, solvent composition, pH,
or salt concentration. In this Letter we reexamine a clas-
sical but still controversial problem of polymer physics
[1,2], the equilibrium swelling of a piece of rubber in good
solvent.

We discuss below the two basic theories addressing this
situation, the classical Flory-Rehner theory [1] and de
Gennes’ c�-theorem [2]. Both are supported by part of
the experimental evidence gathered by combining thermo-
dynamic and rheological investigations with neutron or
light scattering [6–10]. Here we use computer simula-
tions [11–15], since they offer some advantages in the
access to and the control over microscopic details of the
network structure. We concentrate on the role of entan-
glements in limiting the swelling process of defect-free
model networks and, in particular, the structure of the net-
work strands in the swollen gel [16]. Questions relating
to the structural heterogeneity on larger length scales and
the butterfly effect [10,17] will be addressed in a future
publication.

For networks prepared by cross-linking a dry (i.e., sol-
vent-free) melt of linear chains, the strands have Gaussian
statistics, i.e., the mean-square end-to-end distance is re-
lated to the average length, N̄s, by �r2�dry ~ b2N̄2n

s , where
n � 1�2 and b is the monomer radius. The same relation
also holds for all internal distances, leading to the charac-
teristic structure factor S�q� � q21�n for the scattering at
wave vector q from a fractal object.

The classical Flory-Rehner theory [1] writes the gel
free energy F as a sum of two independent terms: a free
energy of mixing with the solvent (favoring swelling and
estimated from the Flory-Huggins theory of semidilute so-
lutions of linear polymers) and an elastic free energy (due
to the affine stretching of the network strands which are
treated as Gaussian, concentration-independent, linear en-
tropic springs). Minimizing F yields Qeq ~ N̄3�5

s for the
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equilibrium degree of swelling. The Flory-Rehner theory
implies that the structure factor of long paths through the
network is of the form S�q� � q22 both locally, where the
chains are unperturbed, and on large scales, where they
deform affinely (�r2�eq ~ �r2�dryQ2�3

eq ) with the outer di-
mensions of the sample. The stretching should be visi-
ble in the crossover region around q � 2p��bN̄1�2

s � with
S�q� � q21.

More recent treatments are based on the scaling theory
of semidilute solutions of linear polymers [2] and the idea
that locally, inside of so-called “blobs,” the chains behave
as isolated, self-avoiding walks with n � 3�5. On larger
scales, the solution behaves as a dense melt of Gaussian
blob chains. In the case of swollen networks, a controversy
exists whether the size of the network strands is determined
by the global connectivity or by the local swelling. Quite
interestingly, the first view [17–19] leads again to the
Flory-Rehner result Qeq ~ N3�5

s . In contrast, de Gennes’
c�-theorem [2] asserts that the macroscopic swelling is
limited only by the local connectivity, which begins to
be felt at the overlap concentration c� ~ N̄s��bN̄n

s �3 of a
semidilute solution of linear polymers of average length
N̄s, corresponding to Qeq ~ N̄

4�5
s . The c�–theorem pre-

dicts S�q� � q25�3 for q . 2p��bN̄3�5
s � as well as un-

usual elastic properties due to the nonlinear elasticity of
the network strands [14,20].

As in earlier investigations of polymer melts and
networks [21–25], we used a coarse-grained polymer
model where beads interacting via a truncated, purely
repulsive Lennard-Jones (LJ) potential are connected by
anharmonic springs. With e, s, and t as the LJ units of
energy, length, and time, the equations of motion were
integrated by a velocity-Verlet algorithm with a weak local
coupling to a heat bath at kBT � 1e. The potentials were
parametrized in such a way that chains were effectively
uncrossable, i.e., the network topology was conserved
for all times. In our studies we did not simulate the
solvent explicitly, but rather used vacuum which can be
considered as a perfect solvent for our purely repulsive
(athermal) network chains. The relevant length and time
scales for chains in a melt are the average bond length,
© 2000 The American Physical Society
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p
�l2 � � 0.965�5�s, the mean-square end-to-end distance

�r2� �N�dry � 1.74�2�l2N [21], the melt entangle-
ment length, Ne � 33�2� monomers, and the Rouse
time tRouse�N� � 1.35tN2 [26]. In dilute solutions,
single chains adopt self-avoiding conformations with
�r2� �N� � 1.8l2N3�5.

Using this model, it is possible to study different
network structures including randomly cross-linked,
randomly end-cross-linked [22,23], and end-linked melts
[24], as well as networks with the regular connectivity of
a crystal lattice [25]. Here we investigate end-cross-linked
model networks created from an equilibrated monodis-
perse melt with M precursor chains of length N at a
meltlike density rdry � 0.85s23 by connecting the end
monomers of the chains to a randomly chosen adjacent
monomer of a different chain. This method yields
defect-free trifunctional systems with an exponential
distribution of strand lengths Ns with an average of
N̄s � N�3. The Gaussian statistics of the strands remains
unperturbed after cross-linking [22,27]. The systems stud-
ied range from M�N � 3200�25 (i.e., the average strand
size N̄s � 8.3) up to M�N � 500�700 (N̄s � 233),
some systems being as large as MN � 5 3 105. All
simulations used periodic boundary conditions in a cubic
box and were performed at constant volume. Starting
from Vdry � MN�rdry , the size of the simulation box was
increased in small steps alternating with equilibration pe-
riods of at least five entanglement times tR�Ne� � 1400t.
The isotropic pressure P was obtained from the micro-
scopic virial tensor and the condition Peq 	 0 was used to
define equilibrium swelling with Qeq � Veq�Vdry . Tests
with a part of the networks using open boundaries did not
show any significant changes of the results.

We investigated the equilibrium swelling of our model
networks as a function of the average strand length Ns.
Figure 1 shows Q21

eq N3�5
e as a function of the average

strand length �Ne�Ns�23�5. In agreement with experimen-
tal results for highly cross-linked networks [8,9], our re-
sults for short strands are compatible with the Flory-Rehner
[1] prediction Qeq ~ N̄3�5

s . They do, however, not allow
for an independent determination of the exponent. In
contradiction to the original theory, we observe a satu-
ration of the equilibrium swelling degree for large N̄s

[8]. The crossover occurs for N̄s � Ne. The extrapolated
maximal degree of equilibrium swelling Qmax�N̄s ! `� �
6.8�3� is close to the swelling degree of an ideal Flory-gel
with average strand length Ne : 1.15N3�5

e � 9.5, where
the prefactor is empirically obtained from the slope of the
straight line in Fig. 1. In contrast, the corresponding esti-
mate based on the c�-theorem, Qeq � b3�s3N4�5

e � 36,
is clearly too high (b � 1.3s is the stastical segment
length in good solution). Our interpretation is that to a first
approximation entanglements act as chemical cross-links
in limiting the swelling of polymer networks. The situa-
tion is analogous to an “olympic gel” [2] of topologically
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FIG. 1. Strand length Ns dependence of the equilibrium degree
of swelling Qeq. The straight line going through zero represents
Flory’s prediction Qeq ~ N̄3�5

s . The melt entanglement length
Ne was used to normalize the axis in order to show that devi-
ations from Flory’s theory occur around Ns � Ne and that the
asymptotic value Qeq�N̄s ! `� is of the order of N3�5

e .

linked ring polymers. In contrast to solutions of linear
polymers, systems containing trapped entanglements
cannot be arbitrarily diluted.

The chain conformations at equilibrium swelling are
best characterized by their structure factor S�q�. Figure 2
shows S�q� of the precursor chains within the network for
our most weakly cross-linked N � 700 sample. We have
chosen the Kratky representation [q2S�q� vs q] to show
the deviation from the Gaussian case [S�q� ~ q22] more
clearly. The observed power law form S�q� ~ q21�n is
characteristic of fractals and common in polymeric sys-
tems. However, the observed exponent n � 0.72�2� is un-
expected. Furthermore, the fractal structure is observed
for a q range of 2s &

2p

q & 15.5s � bN0.72
e , suggesting

that the mean extension of the effective strands of length
Ne is the only relevant length scale in the problem. For
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FIG. 2. Single chain structure function in networks at equi-
librium swelling in Kratky representation. The straight line
corresponds to a power law q221�n (n � 0.72). The figure
contains scattering data for the precursor chains (≤) of length
N � 700 (N̄s � 233) and for network strands of lengths Ns �
10 (�), Ns � 40 (�), Ns � 70 (Ø), and Ns � 100 (�) within
a different network with precursor chains of length N � 100
(N̄s � 33).
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smaller q, we see the onset of the expected scattering of
a Gaussian chain consisting of randomly oriented parts of
length bN0.72

e . Our precursor chains (even N � 700) are
too short to see it clearly developed.

Since the scattering from the precursor chains could
be affected by polydispersity effects, we have investigated
the conformations of the network strands as a function of
their contour length Ns. For high q, all structure functions
fall on top of each other and show the same fractal struc-
ture with S�q� � q21�0.72�2� (Fig. 2). The complementary
Fig. 3 shows a log-log plot of the mean-square strand ex-
tension �r2�eq�Ns� versus their length. In agreement with
the results for the structure functions, we find a power law
�r2�eq ~ b2N230.72

s for strands which are shorter than the
effective strand length Ne and therefore subaffine defor-
mations. Long strands, on the other hand, deform affinely
with �r2�eq � �r2�dryQ

2�3
eq .

Clearly, the results of our simulations do not agree with
the predictions of any of the theories presented in the in-
troduction. While the neglect of entanglements seems to
be fairly simple to repair by treating them as effective
cross-links (with Ne supplanting the average strand length
N̄s [19]), the fractal structure of the strands and the ex-
ponent n � 0.72�2� come as a surprise. In the follow-
ing, we discuss a possible explanation for the stronger
swelling of network strands (n � 0.72) than of single
chains (n � 3�5) under good solvent conditions.

We begin by recalling Flory’s argument [1] for the typi-
cal size RF ~ bNn of a single polymer chain of
length N and statistical segment size b in a good
solvent. The equilibrium between an elastic energy
~ R2

F��b2N� of a Gaussian chain stretched to RF and
a repulsive energy ~ bdRd

F�N�Rd
F�2 due to binary

contacts between monomers in d dimensions leads to
n � 3��d 1 2�.

FIG. 3. Log-log plot of the mean-square end-to-end distance
�r2�eq of the individual network strands within a single network
(N̄s � 33) at equilibrium swelling Q � 5.8 versus strand length
Ns. The straight line corresponds to a power law �r2�eq � N2n

s
with n � 0.72. The data are normalized to an affine deformation
�r2�eq � Q2�3

eq �r2�dry .
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The simplest models for swollen networks have the
regular connectivity of a crystal lattice. In agreement with
the c�-theorem, they adopt equilibrium conformations with
strand extensions of the order of RF [28]. However, these
systems are hardly good models for the swelling process of
networks prepared in the dry state, since the hypothetical
initial state at melt density has an unphysical local struc-
ture with average strand extensions RFQ21�3 ~ bN1�3

s as
in dense globules. In contrast, if the corresponding semidi-
lute solution is compressed, the chains shrink only weakly
from RF to the Gaussian coil radius R ~ bN1�2

s . Instead,
they become highly interpenetrating with nF ~ N1�2

s (the
Flory number) of them sharing a volume of R3. More-
over, at least the simplest model for highly cross-linked
networks prepared in the dry state, nF � N1�2

s mutually
interpenetrating regular networks with strand extensions
of the order of R [25], cannot possibly comply with the
c�-theorem, if one disregards macroscopic chain separa-
tion: Either the strands extend to RF , leading to internal
concentrations of c�N1�2

s , or the systems swell to c�, in
which case the strands are stretched to RFN1�6

s . The same
conclusions should hold for any network without too many
defects, where the global connectivity forces neighboring
chains to share the same volume independent of the degree
of swelling.

We now consider a Flory argument for a group of
chains which can swell but not desinterpenetrate, i.e.,
nF � Ndn21 chains of length N which span a volume Rd

FR .
The equilibrium between the elastic energy ~ n2

FR��b2N�
and the repulsive energy ~ bdRd

FR�nFN�Rd
FR�2 leads to

n �
4 1 d
4 1 2d

. (1)

Quite interestingly, this local argument reproduces in
three dimensions with Qeq � Nd��d12� � N3�5 and
RFR � Q1�dbN1�2 � N7�10 the results of the classical
Flory-Rehner theory of gels. However, in analogy to
the Flory argument for single chains, Eq. (1) should
also apply to subchains of length G with 1 ø G , N
which share their volume with a correspondingly smaller
number of other subchains. In particular, the local degree
of swelling, G1�5, should be subaffine and the exponent
n � 7�10 should characterize the entire local chain
structure up to the length scale of the effective strand
length, Ne. This is in excellent agreement with the main
findings from our simulations (see Figs. 2 and 3).

Before we conclude, some additional remarks are in or-
der: (i) For swelling in a theta solvent, the analogous scal-
ing argument yields Q � N3�8 in agreement with previous
theories and experiments [8,9,19] and predicts local chain
structures characterized by n � 5�8. (ii) Equation (1) can
also be derived along the lines of [17–19] from an equi-
librium between the elastic energy of blob chains and the
osmotic pressure of a semidilute polymer solutions. Note
that the appropriate blob size is a function of the size G of
the subchains under consideration and that isolated chain
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behavior is expected only below the original correlation
length jprep for systems prepared by cross-linking semidi-
lute solutions. (iii) Sommer, Vilgis, and Heinrich [29] have
argued that the effective inner fractal dimension di of a
polymer network is larger than di � 1 for linear chains,
leading to stronger swelling with n � �di 1 2���d 1 2�.
While the correction goes into the right direction, it is dif-
ficult to explain a strand length independent effective in-
ner fractal dimension of di � 1.5 as an effect of the local
connectivity. (iv) However, such effects may well be im-
portant in systems with a sufficient number of defects such
as dangling ends or clusters. If the global connectivity is
weak, the chains may locally desinterpenetrate, leading to
a behavior which agrees much better with the c�-theorem
[7,12].

In summary, we have used large scale computer simu-
lations and scaling arguments to investigate the equilib-
rium swelling of defect-free model polymer networks
prepared at melt density. We find that the chain structure
on short scales is independent of the network connectivity
and characterized by an exponent n � 7�10, while the
macroscopic degree of swelling is controlled through
an (entanglement limited) effective strand length. The
predicted chain structure should be directly observable in
neutron scattering experiments.

We acknowledge the support of the Höchstleis-
tungsrechenzentrum Jülich and the Rechenzentrum of the
MPG in München and thank G. S. Grest for discussions
and a careful reading of the manuscript.

Note added.—After this work was finished, we learned
of unpublished theoretical work by Rabin [30] and
by Erman et al. [31] predicting n � 7�10 in swollen
networks.

*Present address: Sandia National Laboratories, Albu-
querque, NM 87185-1349.
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